Predicting effects of noncoding variants with deep learning-based sequence model

被引:25
|
作者
Zhou, Jian [1 ,2 ]
Troyanskaya, Olga G. [1 ,3 ,4 ]
机构
[1] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[2] Princeton Univ, Grad Program Quantitat & Computat Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Simons Fdn, Simons Ctr Data Anal, New York, NY USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
REGULATORY VARIANTS; FRAMEWORK;
D O I
10.1038/NMETH.3547
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.
引用
收藏
页码:931 / 934
页数:4
相关论文
共 50 条
  • [41] Deep Contrastive Learning-Based Model for ECG Biometrics
    Ammour, Nassim
    Jomaa, Rami M.
    Islam, Md Saiful
    Bazi, Yakoub
    Alhichri, Haikel
    Alajlan, Naif
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [42] A deep learning-based model for screening and staging pneumoconiosis
    Zhang, Liuzhuo
    Rong, Ruichen
    Li, Qiwei
    Yang, Donghan M.
    Yao, Bo
    Luo, Danni
    Zhang, Xiong
    Zhu, Xianfeng
    Luo, Jun
    Liu, Yongquan
    Yang, Xinyue
    Ji, Xiang
    Liu, Zhidong
    Xie, Yang
    Sha, Yan
    Li, Zhimin
    Xiao, Guanghua
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] A deep learning-based model for screening and staging pneumoconiosis
    Liuzhuo Zhang
    Ruichen Rong
    Qiwei Li
    Donghan M. Yang
    Bo Yao
    Danni Luo
    Xiong Zhang
    Xianfeng Zhu
    Jun Luo
    Yongquan Liu
    Xinyue Yang
    Xiang Ji
    Zhidong Liu
    Yang Xie
    Yan Sha
    Zhimin Li
    Guanghua Xiao
    [J]. Scientific Reports, 11
  • [44] Robust deep learning-based protein sequence design using ProteinMPNN
    Dauparas, J.
    Anishchenko, I.
    Bennett, N.
    Bai, H.
    Ragotte, R. J.
    Milles, L. F.
    Wicky, B. I. M.
    Courbet, A.
    de Haas, R. J.
    Bethel, N.
    Leung, P. J. Y.
    Huddy, T. F.
    Pellock, S.
    Tischer, D.
    Chan, F.
    Koepnick, B.
    Nguyen, H.
    Kang, A.
    Sankaran, B.
    Bera, A. K.
    King, N. P.
    Baker, D.
    [J]. SCIENCE, 2022, 378 (6615) : 49 - 55
  • [45] Deep learning-based automatic assessment and cluster analysis of atopic dermatitis: A model for predicting therapeutic efficacy
    Nakamoto, K.
    Hayashida, Y.
    Tetsushi, K.
    Aoyama, Y.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S35 - S35
  • [46] Predicting the tasks of disabled persons using deep learning-based motor imagery model in BCI applications
    Nayak P.
    Meenakshi S.
    Medikondu N.R.
    [J]. Research on Biomedical Engineering, 2023, 39 (04) : 977 - 989
  • [47] Multi_CycGT: A Deep Learning-Based Multimodal Model for Predicting the Membrane Permeability of Cyclic Peptides
    Cao, Lujing
    Xu, Zhenyu
    Shang, Tianfeng
    Zhang, Chengyun
    Wu, Xinyi
    Wu, Yejian
    Zhai, Silong
    Zhan, Zhajun
    Duan, Hongliang
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2024, 67 (03) : 1888 - 1899
  • [48] Deep learning-based multiomics integration model for predicting axillary lymph node metastasis in breast cancer
    Li, Xue
    Yang, Lifeng
    Jiao, Xiong
    [J]. FUTURE ONCOLOGY, 2023, 19 (20) : 1429 - 1438
  • [49] DiaDeL: An Accurate Deep Learning-Based Model With Mutational Signatures for Predicting Metastasis Stage and Cancer Types
    Abdollahi, Sina
    Lin, Peng-Chan
    Chiang, Jung-Hsien
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1336 - 1343
  • [50] A deep learning-based dynamic model for predicting acute kidney injury risk severity in postoperative patients
    Adiyeke, Esra
    Ren, Yuanfang
    Ruppert, Matthew M.
    Shickel, Benjamin
    Kane-Gill, Sandra L.
    Murugan, Raghavan
    Rashidi, Parisa
    Bihorac, Azra
    Ozrazgat-Baslanti, Tezcan
    [J]. SURGERY, 2023, 174 (03) : 709 - 714