Pruning Playouts in Monte-Carlo Tree Search for the Game of Havannah

被引:5
|
作者
Dugueperoux, Joris [1 ]
Mazyad, Ahmad [1 ]
Teytaud, Fabien [1 ]
Dehos, Julien [1 ]
机构
[1] ULCO, LISIC, Calais, France
来源
COMPUTERS AND GAMES, CG 2016 | 2016年 / 10068卷
关键词
GOOD-REPLY POLICY;
D O I
10.1007/978-3-319-50935-8_5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte-Carlo Tree Search (MCTS) is a popular technique for playing multi-player games. In this paper, we propose a new method to bias the playout policy of MCTS. The idea is to prune the decisions which seem "bad" (according to the previous iterations of the algorithm) before computing each playout. Thus, the method evaluates the estimated "good" moves more precisely. We have tested our improvement for the game of Havannah and compared it to several classic improvements. Our method outperforms the classic version of MCTS (with the RAVE improvement) and the different playout policies of MCTS that we have experimented.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 50 条
  • [41] Generalized Mean Estimation in Monte-Carlo Tree Search
    Dam, Tuan
    Klink, Pascal
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2397 - 2404
  • [42] Automated Machine Learning with Monte-Carlo Tree Search
    Rakotoarison, Herilalaina
    Schoenauer, Marc
    Sebag, Michele
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3296 - 3303
  • [43] Monte-Carlo Tree Search Parallelisation for Computer Go
    van Niekerk, Francois
    Kroon, Steve
    van Rooyen, Gert-Jan
    Inggs, Cornelia P.
    [J]. PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, 2012, : 129 - 138
  • [44] CROSS-ENTROPY FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J. B.
    Winands, Mark H. M.
    Szita, Istvan
    van den Herik, H. Jaap
    [J]. ICGA JOURNAL, 2008, 31 (03) : 145 - 156
  • [45] Can Monte-Carlo Tree Search learn to sacrifice?
    Nathan Companez
    Aldeida Aleti
    [J]. Journal of Heuristics, 2016, 22 : 783 - 813
  • [46] Can Monte-Carlo Tree Search learn to sacrifice?
    Companez, Nathan
    Aleti, Aldeida
    [J]. JOURNAL OF HEURISTICS, 2016, 22 (06) : 783 - 813
  • [47] Bayesian Optimization for Backpropagation in Monte-Carlo Tree Search
    Lim, Nengli
    Li, Yueqin
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 209 - 221
  • [48] Parallel Monte-Carlo Tree Search for HPC Systems
    Graf, Tobias
    Lorenz, Ulf
    Platzner, Marco
    Schaefers, Lars
    [J]. EURO-PAR 2011 PARALLEL PROCESSING, PT 2, 2011, 6853 : 365 - 376
  • [49] Monte-Carlo Tree Search for the Maximum Satisfiability Problem
    Goffinet, Jack
    Ramanujan, Raghuram
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 251 - 267
  • [50] Monte-Carlo Tree Search by Best Arm Identification
    Kaufmann, Emilie
    Koolen, Wouter M.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30