Automated Machine Learning with Monte-Carlo Tree Search

被引:0
|
作者
Rakotoarison, Herilalaina [1 ]
Schoenauer, Marc [1 ]
Sebag, Michele [1 ]
机构
[1] Univ Paris Saclay, TAU, LRI CNRS INRIA, Paris, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The AutoML task consists of selecting the proper algorithm in a machine learning portfolio, and its hyperparameter values, in order to deliver the best performance on the dataset at hand. MOSAIC, a Monte-Carlo tree search (MCTS) based approach, is presented to handle the AutoML hybrid structural and parametric expensive black-box optimization problem. Extensive empirical studies are conducted to independently assess and compare: i) the optimization processes based on Bayesian optimization or MCTS; ii) its warm-start initialization; iii) the ensembling of the solutions gathered along the search. MOSAIC is assessed on the OpenML 100 benchmark and the Scikit-learn portfolio, with statistically significant gains over AUTO-SKLEARN, winner of former international AutoML challenges.
引用
收藏
页码:3296 / 3303
页数:8
相关论文
共 50 条
  • [1] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Ertel, Wolfgang
    Viet-Hung Dang
    Chung, TaeChoong
    [J]. APPLIED INTELLIGENCE, 2013, 39 (02) : 345 - 353
  • [2] Monte-Carlo tree search for Bayesian reinforcement learning
    Ngo Anh Vien
    Wolfgang Ertel
    Viet-Hung Dang
    TaeChoong Chung
    [J]. Applied Intelligence, 2013, 39 : 345 - 353
  • [3] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    [J]. COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [4] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [5] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [6] Learning to Search Promising Regions by a Monte-Carlo Tree Model
    Xia, Hai
    Li, Changhe
    Zeng, Sanyou
    Tan, Qingshan
    Wang, Junchen
    Yang, Shengxiang
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [7] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    [J]. 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [8] Industrial scheduling with Monte Carlo tree search and machine learning
    Lubosch, Marco
    Kunath, Martin
    Winkler, Herwig
    [J]. 51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 : 1283 - 1287
  • [9] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [10] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31