Automated Machine Learning with Monte-Carlo Tree Search

被引:0
|
作者
Rakotoarison, Herilalaina [1 ]
Schoenauer, Marc [1 ]
Sebag, Michele [1 ]
机构
[1] Univ Paris Saclay, TAU, LRI CNRS INRIA, Paris, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The AutoML task consists of selecting the proper algorithm in a machine learning portfolio, and its hyperparameter values, in order to deliver the best performance on the dataset at hand. MOSAIC, a Monte-Carlo tree search (MCTS) based approach, is presented to handle the AutoML hybrid structural and parametric expensive black-box optimization problem. Extensive empirical studies are conducted to independently assess and compare: i) the optimization processes based on Bayesian optimization or MCTS; ii) its warm-start initialization; iii) the ensembling of the solutions gathered along the search. MOSAIC is assessed on the OpenML 100 benchmark and the Scikit-learn portfolio, with statistically significant gains over AUTO-SKLEARN, winner of former international AutoML challenges.
引用
收藏
页码:3296 / 3303
页数:8
相关论文
共 50 条
  • [21] The Multiple Uses of Monte-Carlo Tree Search
    Senington, Richard
    [J]. SPS 2022, 2022, 21 : 713 - 724
  • [22] Multiple Tree for Partially Observable Monte-Carlo Tree Search
    Auger, David
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, PT I, 2011, 6624 : 53 - 62
  • [23] Monte-Carlo tree search as regularized policy optimization
    Grill, Jean-Bastien
    Altche, Florent
    Tang, Yunhao
    Hubert, Thomas
    Valko, Michal
    Antonoglou, Ioannis
    Munos, Remi
    [J]. 25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [24] Parallel Monte-Carlo Tree Search with Simulation Servers
    Kato, Hideki
    Takeuchi, Ikuo
    [J]. INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI 2010), 2010, : 491 - 498
  • [25] AIs for Dominion Using Monte-Carlo Tree Search
    Tollisen, Robin
    Jansen, Jon Vegard
    Goodwin, Morten
    Glimsdal, Sondre
    [J]. CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 43 - 52
  • [26] Converging to a Player Model In Monte-Carlo Tree Search
    Sarratt, Trevor
    Pynadath, David V.
    Jhala, Arnav
    [J]. 2014 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2014,
  • [27] A SHOGI PROGRAM BASED ON MONTE-CARLO TREE SEARCH
    Sato, Yoshikuni
    Takahashi, Daisuke
    Grimbergen, Reijer
    [J]. ICGA JOURNAL, 2010, 33 (02) : 80 - 92
  • [28] Generalized Mean Estimation in Monte-Carlo Tree Search
    Dam, Tuan
    Klink, Pascal
    D'Eramo, Carlo
    Peters, Jan
    Pajarinen, Joni
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2397 - 2404
  • [29] Monte-Carlo Tree Search Parallelisation for Computer Go
    van Niekerk, Francois
    Kroon, Steve
    van Rooyen, Gert-Jan
    Inggs, Cornelia P.
    [J]. PROCEEDINGS OF THE SOUTH AFRICAN INSTITUTE FOR COMPUTER SCIENTISTS AND INFORMATION TECHNOLOGISTS CONFERENCE, 2012, : 129 - 138
  • [30] CROSS-ENTROPY FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J. B.
    Winands, Mark H. M.
    Szita, Istvan
    van den Herik, H. Jaap
    [J]. ICGA JOURNAL, 2008, 31 (03) : 145 - 156