Pruning Playouts in Monte-Carlo Tree Search for the Game of Havannah

被引:5
|
作者
Dugueperoux, Joris [1 ]
Mazyad, Ahmad [1 ]
Teytaud, Fabien [1 ]
Dehos, Julien [1 ]
机构
[1] ULCO, LISIC, Calais, France
来源
COMPUTERS AND GAMES, CG 2016 | 2016年 / 10068卷
关键词
GOOD-REPLY POLICY;
D O I
10.1007/978-3-319-50935-8_5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte-Carlo Tree Search (MCTS) is a popular technique for playing multi-player games. In this paper, we propose a new method to bias the playout policy of MCTS. The idea is to prune the decisions which seem "bad" (according to the previous iterations of the algorithm) before computing each playout. Thus, the method evaluates the estimated "good" moves more precisely. We have tested our improvement for the game of Havannah and compared it to several classic improvements. Our method outperforms the classic version of MCTS (with the RAVE improvement) and the different playout policies of MCTS that we have experimented.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 50 条
  • [21] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    [J]. ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [22] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [23] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [24] Scalability and Parallelization of Monte-Carlo Tree Search
    Bourki, Amine
    Chaslot, Guillaume
    Coulm, Matthieu
    Danjean, Vincent
    Doghmen, Hassen
    Hoock, Jean-Baptiste
    Herault, Thomas
    Rimmel, Arpad
    Teytaud, Fabien
    Teytaud, Olivier
    Vayssiere, Paul
    Yu, Ziqin
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 48 - 58
  • [25] Monte-Carlo Tree Search for Policy Optimization
    Ma, Xiaobai
    Driggs-Campbell, Katherine
    Zhang, Zongzhang
    Kochenderfer, Mykel J.
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3116 - 3122
  • [26] PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH
    Chaslot, Guillaume M. J-B.
    Winands, Mark H. M.
    Van den Herik, H. Jaap
    Uiterwijk, Jos W. H. M.
    Bouzy, Bruno
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2008, 4 (03) : 343 - 357
  • [27] LinUCB Applied to Monte-Carlo Tree Search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    [J]. ADVANCES IN COMPUTER GAMES, ACG 2015, 2015, 9525 : 41 - 52
  • [28] A Parallel Monte-Carlo Tree Search Algorithm
    Cazenave, Tristan
    Jouandeau, Nicolas
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 72 - 80
  • [29] Score Bounded Monte-Carlo Tree Search
    Cazenave, Tristan
    Saffidine, Abdallah
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 93 - 104
  • [30] Split Moves for Monte-Carlo Tree Search
    Kowalski, Jakub
    Mika, Maksymilian
    Pawlik, Wojciech
    Sutowicz, Jakub
    Szykula, Marek
    Winands, Mark H. M.
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10247 - 10255