PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH

被引:193
|
作者
Chaslot, Guillaume M. J-B. [1 ]
Winands, Mark H. M. [1 ]
Van den Herik, H. Jaap [1 ]
Uiterwijk, Jos W. H. M. [1 ]
Bouzy, Bruno [2 ]
机构
[1] Univ Maastricht, Fac Humanities & Sci, MICC IKAT Games & AI Grp, POB 616, NL-6200 MD Maastricht, Netherlands
[2] Univ Paris 5 Descartes, Ctr Rech Informat Paris 5, F-75270 Paris 06, France
关键词
Monte-Carlo Tree Search; heuristic search; Computer Go;
D O I
10.1142/S1793005708001094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Monte-Carlo Tree Search (MCTS) is a new best-first search guided by the results of Monte-Carlo simulations. In this article, we introduce two progressive strategies for MCTS, called progressive bias and progressive unpruning. They enable the use of relatively time-expensive heuristic knowledge without speed reduction. Progressive bias directs the search according to heuristic knowledge. Progressive unpruning first reduces the branching factor, and then increases it gradually again. Experiments assess that the two progressive strategies significantly improve the level of our Go program Mango. Moreover, we see that the combination of both strategies performs even better on larger board sizes.
引用
收藏
页码:343 / 357
页数:15
相关论文
共 50 条
  • [1] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    [J]. COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [2] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [3] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    [J]. COMPUTERS AND GAMES, 2008, 5131 : 25 - +
  • [4] Monte-Carlo Tree Search with Tree Shape Control
    Marchenko, Oleksandr I.
    Marchenko, Oleksii O.
    [J]. 2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 812 - 817
  • [5] Comparing Randomization Strategies for Search-Control Parameters in Monte-Carlo Tree Search
    Sironi, Chiara F.
    Winands, Mark H. M.
    [J]. 2019 IEEE CONFERENCE ON GAMES (COG), 2019,
  • [6] Monte-Carlo Tree Search for Constrained POMDPs
    Lee, Jongmin
    Kim, Geon-Hyeong
    Poupart, Pascal
    Kim, Kee-Eung
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Monte-Carlo Tree Search in Settlers of Catan
    Szita, Istvan
    Chaslot, Guillaume
    Spronck, Pieter
    [J]. ADVANCES IN COMPUTER GAMES, 2010, 6048 : 21 - +
  • [8] Monte-Carlo Tree Search: To MC or to DP?
    Feldman, Zohar
    Domshlak, Carmel
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 321 - 326
  • [9] Score Bounded Monte-Carlo Tree Search
    Cazenave, Tristan
    Saffidine, Abdallah
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 93 - 104
  • [10] Improving Monte-Carlo Tree Search in Havannah
    Lorentz, Richard J.
    [J]. COMPUTERS AND GAMES, 2011, 6515 : 105 - 115