COMPLEXITY OF QUASIVARIETY LATTICES

被引:11
|
作者
Schwidefsky, M. V. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
computable set; lattice; quasivariety; Q-universality; undecidable problem; universal class; variety; UNIVERSAL VARIETIES; SUBQUASIVARIETY LATTICES; DISTRIBUTIVE LATTICES; QUASIVARIETIES; ALGEBRAS; SEMIGROUPS; HOMOMORPHISMS; GRAPHS;
D O I
10.1007/s10469-015-9344-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a quasivariety A of algebraic systems of finite signature satisfies some generalization of a sufficient condition for Q-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set {S-i | i is an element of I} of finite semilattices, the lattice Pi(i is an element of I) Sub(S-i) is a homomorphic image of some sublattice of a quasivariety lattice Lq(A). Specifically, there exists a subclass K subset of A such that the problem of embedding a finite lattice in a lattice Lq(K) of K-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [41] Computational complexity for bounded distributive lattices with negation
    Shkatov, Dmitry
    Van Alten, C. J.
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (07)
  • [42] On complexity reduction of concept lattices: three counterexamples
    Krupka, Michal
    INFORMATION RETRIEVAL, 2012, 15 (02): : 151 - 177
  • [43] ON CATEGORIES OF ALGEBRAS EQUIVALENT TO A QUASIVARIETY
    BANKSTON, P
    FOX, R
    ALGEBRA UNIVERSALIS, 1983, 16 (02) : 153 - 158
  • [44] ON THE INDEPENDENCY OF THE QUASIVARIETY OF NILPOTENT GROUPS
    Budkin, Alexandr Ivanovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 516 - 522
  • [45] Equivalents for a quasivariety to be generated by a single structure
    Dziobiak W.
    Kravchenko A.V.
    Wojciechowski P.J.
    Studia Logica, 2009, 91 (1) : 113 - 123
  • [46] The rectangle complexity of functions on two-dimensional lattices
    Sander, JW
    Tijdeman, R
    THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) : 857 - 863
  • [47] On Links between Concept Lattices and Related Complexity Problems
    Babin, Mikhail A.
    Kuznetsov, Sergei O.
    FORMAL CONCEPTS ANALYSIS, PROCEEDINGS, 2010, 5986 : 138 - 144
  • [48] Trellis complexity versus the coding gain of lattices II
    AT&T Lab, Murray Hill, United States
    IEEE Trans Inf Theory, 6 pt 1 (1808-1816):
  • [49] Trellis complexity versus the coding gain of lattices I
    Tarokh, Vahid
    Blake, Ian F.
    IEEE Transactions on Information Theory, 1996, 42 (6 pt 1): : 1796 - 1807
  • [50] THE COMPLEXITY OF ANTIFERROMAGNETIC INTERACTIONS AND 2D LATTICES
    Piddock, Stephen
    Montanaro, Ashley
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (7-8) : 636 - 672