COMPLEXITY OF QUASIVARIETY LATTICES

被引:11
|
作者
Schwidefsky, M. V. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
computable set; lattice; quasivariety; Q-universality; undecidable problem; universal class; variety; UNIVERSAL VARIETIES; SUBQUASIVARIETY LATTICES; DISTRIBUTIVE LATTICES; QUASIVARIETIES; ALGEBRAS; SEMIGROUPS; HOMOMORPHISMS; GRAPHS;
D O I
10.1007/s10469-015-9344-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a quasivariety A of algebraic systems of finite signature satisfies some generalization of a sufficient condition for Q-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set {S-i | i is an element of I} of finite semilattices, the lattice Pi(i is an element of I) Sub(S-i) is a homomorphic image of some sublattice of a quasivariety lattice Lq(A). Specifically, there exists a subclass K subset of A such that the problem of embedding a finite lattice in a lattice Lq(K) of K-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条
  • [21] On the linear complexity of binary lattices
    Katalin Gyarmati
    Christian Mauduit
    András Sárközy
    The Ramanujan Journal, 2013, 32 : 185 - 201
  • [22] On the linear complexity of binary lattices
    Gyarmati, Katalin
    Mauduit, Christian
    Sarkoezy, Andras
    RAMANUJAN JOURNAL, 2013, 32 (02): : 185 - 201
  • [23] A CLASSIFICATION OF COMPLEXITY CORE LATTICES
    ORPONEN, P
    THEORETICAL COMPUTER SCIENCE, 1986, 47 (02) : 121 - 130
  • [24] ON THE COMPUTATIONAL-COMPLEXITY OF ALGEBRA ON LATTICES
    HUNT, HB
    ROSENKRANTZ, DJ
    BLONIARZ, PA
    SIAM JOURNAL ON COMPUTING, 1987, 16 (01) : 129 - 148
  • [25] Upper bounds on trellis complexity of lattices
    Tarokh, V
    Vardy, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1294 - 1300
  • [26] On the trellis complexity of root lattices and their duals
    Banihashemi, AH
    Blake, IF
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2168 - 2172
  • [27] Tuning complexity on randomly occupied lattices
    Jyh, TI
    Ren, TI
    UNIFYING THEMES IN COMPLEX SYSTEMS, 2000, : 569 - 578
  • [28] Lattices in machine learning: Complexity issues
    Kourie, DG
    Oosthuizen, GD
    ACTA INFORMATICA, 1998, 35 (04) : 269 - 292
  • [29] On linear complexity of binary lattices, II
    Gyarmati, Katalin
    Mauduit, Christian
    Sarkoezy, Andras
    RAMANUJAN JOURNAL, 2014, 34 (02): : 237 - 263
  • [30] Lattices in machine learning: Complexity issues
    Derrick G. Kourie
    G. Deon Oosthuizen
    Acta Informatica, 1998, 35 : 269 - 292