COMPLEXITY OF QUASIVARIETY LATTICES

被引:11
|
作者
Schwidefsky, M. V. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
computable set; lattice; quasivariety; Q-universality; undecidable problem; universal class; variety; UNIVERSAL VARIETIES; SUBQUASIVARIETY LATTICES; DISTRIBUTIVE LATTICES; QUASIVARIETIES; ALGEBRAS; SEMIGROUPS; HOMOMORPHISMS; GRAPHS;
D O I
10.1007/s10469-015-9344-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a quasivariety A of algebraic systems of finite signature satisfies some generalization of a sufficient condition for Q-universality treated by M. E. Adams and W. A. Dziobiak, then, for any at most countable set {S-i | i is an element of I} of finite semilattices, the lattice Pi(i is an element of I) Sub(S-i) is a homomorphic image of some sublattice of a quasivariety lattice Lq(A). Specifically, there exists a subclass K subset of A such that the problem of embedding a finite lattice in a lattice Lq(K) of K-quasivarieties is undecidable. This, in particular, implies a recent result of A. M. Nurakunov.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 50 条