Covering a set of line segments with a few squares

被引:0
|
作者
Gudmundsson, Joachim [1 ]
van de Kerkhof, Mees [2 ]
van Renssen, Andre [1 ]
Staals, Frank [2 ]
Wiratma, Lionov [3 ]
Wong, Sampson [1 ]
机构
[1] Univ Sydney, Sydney, NSW, Australia
[2] Univ Utrecht, Utrecht, Netherlands
[3] Parahyangan Catholic Univ, Kota Bandung, Indonesia
关键词
Computational geometry; Geometric coverings; Data structures;
D O I
10.1016/j.tcs.2022.04.053
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study three covering problems in the plane. Our original motivation for these problems comes from trajectory analysis. The first is to decide whether a given set of line segments can be covered by up to k = 4unit-sized, axis-parallel squares. We give linear time algorithms for k <= 3and an O(n log n) time algorithm for k = 4. The second is to build a data structure on a trajectory to efficiently answer whether any query subtrajectory is coverable by up to three unit-sized axis-parallel squares. For k = 2 and k = 3we construct data structures of size O(n alpha(n) logn) in O(n alpha(n) logn) time, so that we can test if an arbitrary subtrajectory can be k-covered in O(logn) time. The third problem is to compute a longest subtrajectory of a given trajectory that can be covered by up to two unit-sized axis-parallel squares. We give O(n2(alpha(n)) log(2)n) time algorithms for k <= 2. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 98
页数:25
相关论文
共 50 条
  • [41] ON COVERING SEGMENTS WITH UNIT INTERVALS
    Bergren, D. A. N.
    Eiben, Eduard
    Ganian, Robert
    Kanj, Iyad
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) : 1200 - 1230
  • [42] On Covering Segments with Unit Intervals
    Bergren, Dan
    Eiben, Eduard
    Ganian, Robert
    Kanj, Iyad
    [J]. 37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [43] Covering the real line with translates of a zero-dimensional compact set
    Mathe, Andras
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 213 (03) : 213 - 219
  • [44] Parallel covering a rhombus with squares
    Chen-Yang Su
    Xue Li
    [J]. Periodica Mathematica Hungarica, 2024, 88 : 190 - 203
  • [45] Parallel covering a rhombus with squares
    Su, Chen-Yang
    Li, Xue
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 190 - 203
  • [46] Strong covering without squares
    Shelah, S
    [J]. FUNDAMENTA MATHEMATICAE, 2000, 166 (1-2) : 87 - 107
  • [47] Parallel covering a parallelogram with squares
    Su, Z. -J.
    Zhang, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 264 - 286
  • [48] COVERING DISKS WITH SQUARES AND RECTANGLES
    GOLDBERG, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (02): : 195 - &
  • [49] COVERING PLANE WITH INTEGRAL SQUARES
    GOLDBERG, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 419 - &
  • [50] Parallel covering a parallelogram with squares
    Z.-J. Su
    J. Zhang
    [J]. Acta Mathematica Hungarica, 2024, 172 : 264 - 286