Parallel covering a parallelogram with squares

被引:0
|
作者
Z.-J. Su
J. Zhang
机构
[1] Hebei Normal University,School of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2024年 / 172卷
关键词
parallel covering; parallelogram; square; 52C15; 05B40;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} is a parallelogram with the longer side 1, with acute angle α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and with height h. Let S be a square with a side parallel to the longer side of R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} and let {Sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S_{n}\}$$\end{document} be a collection of the homothetic copies of S. In this note a tight lower bound of the sum of the areas of squares from {Sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S_{n}\}$$\end{document} that can parallel cover R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} is given.
引用
收藏
页码:264 / 286
页数:22
相关论文
共 50 条
  • [1] Parallel covering a parallelogram with squares
    Su, Z. -J.
    Zhang, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 264 - 286
  • [2] Parallel covering a rhombus with squares
    Su, Chen-Yang
    Li, Xue
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 190 - 203
  • [3] Parallel covering a rhombus with squares
    Chen-Yang Su
    Xue Li
    [J]. Periodica Mathematica Hungarica, 2024, 88 : 190 - 203
  • [4] PARALLEL COVERING OF A TRIANGLE WITH SQUARES
    Januszewski, Janusz
    Zielonka, Lukasz
    [J]. ARS COMBINATORIA, 2020, 149 : 165 - 183
  • [5] On Parallel Packing and Covering of Squares and Cubes
    Fu, Miao
    Lian, Yanlu
    Zhang, Yuqin
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [6] Parallel covering of isosceles triangles with squares
    Lu, M.
    Su, Z.
    [J]. ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 266 - 297
  • [7] Parallel covering of isosceles triangles with squares
    M. Lu
    Z. Su
    [J]. Acta Mathematica Hungarica, 2018, 155 : 266 - 297
  • [8] On Parallel Packing and Covering of Squares and Cubes
    Miao Fu
    Yanlu Lian
    Yuqin Zhang
    [J]. Results in Mathematics, 2019, 74
  • [9] PARALLEL COVERING AN OBTUSE TRIANGLE WITH SQUARES
    Su, Zhanjun
    Wu, Yufang
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (02) : 161 - 184
  • [10] Parallel packing and covering of an equilateral triangle with sequences of squares
    J. Januszewski
    [J]. Acta Mathematica Hungarica, 2009, 125 : 249 - 260