Parallel covering a parallelogram with squares

被引:0
|
作者
Z.-J. Su
J. Zhang
机构
[1] Hebei Normal University,School of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2024年 / 172卷
关键词
parallel covering; parallelogram; square; 52C15; 05B40;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} is a parallelogram with the longer side 1, with acute angle α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} and with height h. Let S be a square with a side parallel to the longer side of R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} and let {Sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S_{n}\}$$\end{document} be a collection of the homothetic copies of S. In this note a tight lower bound of the sum of the areas of squares from {Sn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S_{n}\}$$\end{document} that can parallel cover R(h,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(h, \alpha)$$\end{document} is given.
引用
收藏
页码:264 / 286
页数:22
相关论文
共 50 条
  • [21] PARALLEL COVERING
    TUUHA, R
    [J]. PAPERI JA PUU-PAPER AND TIMBER, 1986, 68 (11): : 778 - &
  • [22] Strong covering without squares
    Shelah, S
    [J]. FUNDAMENTA MATHEMATICAE, 2000, 166 (1-2) : 87 - 107
  • [23] COVERING DISKS WITH SQUARES AND RECTANGLES
    GOLDBERG, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (02): : 195 - &
  • [24] COVERING PLANE WITH INTEGRAL SQUARES
    GOLDBERG, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 419 - &
  • [25] TRANSLATIVE COVERING BY UNIT SQUARES
    Januszewski, Janusz
    [J]. DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 605 - 616
  • [26] Covering segments with unit squares
    Acharyya, Ankush
    Nandy, Subhas C.
    Pandit, Supantha
    Roy, Sasanka
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 79 : 1 - 13
  • [27] Covering Segments with Unit Squares
    Acharyya, Ankush
    Nandy, Subhas C.
    Pandit, Supantha
    Roy, Sasanka
    [J]. ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 1 - 12
  • [28] Covering a Connected Curve on the Torus with Squares
    Shiu, Shang-Yuan
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (02) : 480 - 488
  • [29] A COVERING PROBLEM FOR IDEMPOTENT LATIN SQUARES
    HEINRICH, K
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (02): : 144 - 148
  • [30] Covering a Connected Curve on the Torus with Squares
    Shang-Yuan Shiu
    [J]. Journal of Theoretical Probability, 2013, 26 : 480 - 488