On Parallel Packing and Covering of Squares and Cubes

被引:0
|
作者
Miao Fu
Yanlu Lian
Yuqin Zhang
机构
[1] Tianjin University,School of Mathematics
来源
Results in Mathematics | 2019年 / 74卷
关键词
Packing; covering; homothetic copies; tetrahedron; 52C15; 52C17;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that T is a right triangle with leg lengths 1 and 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}, Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r}$$\end{document} is a trirectangular tetrahedron with three right-angle edges lengths 1, 1 and 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}. And let {Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}} be a sequence of the homothetic copies of a square S with a side parallel to some leg of T, {Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{n}$$\end{document}} be a sequence of the homothetic copies of a cube C with a face parallel to the base face of Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r}$$\end{document}. We first determine the bound of sums of areas of squares from the sequence {Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document}} that permits a parallel packing of T. Then we show the bound of sums of volumes of cubes from the sequence {Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{n}$$\end{document}} that permits a parallel covering of Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{r}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On Parallel Packing and Covering of Squares and Cubes
    Fu, Miao
    Lian, Yanlu
    Zhang, Yuqin
    [J]. RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [2] Parallel packing and covering of an equilateral triangle with sequences of squares
    J. Januszewski
    [J]. Acta Mathematica Hungarica, 2009, 125 : 249 - 260
  • [3] PARALLEL PACKING AND COVERING OF AN EQUILATERAL TRIANGLE WITH SEQUENCES OF SQUARES
    Januszewski, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2009, 125 (03) : 249 - 260
  • [4] Parallel Packing and Covering of an Isosceles Right Triangle with Sequences of Squares
    Su, Chenyang
    Su, Zhanjun
    Yuan, Liping
    [J]. ARS COMBINATORIA, 2017, 130 : 3 - 16
  • [5] Online Bin Packing of Squares and Cubes
    Epstein, Leah
    Mualem, Loay
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 357 - 370
  • [6] A note on perfect packing of squares and cubes
    J. Januszewski
    Ł. Zielonka
    [J]. Acta Mathematica Hungarica, 2021, 163 : 530 - 537
  • [7] Online Bin Packing of Squares and Cubes
    Epstein, Leah
    Mualem, Loay
    [J]. ALGORITHMICA, 2023, 85 (05) : 1415 - 1458
  • [8] Online Bin Packing of Squares and Cubes
    Leah Epstein
    Loay Mualem
    [J]. Algorithmica, 2023, 85 : 1415 - 1458
  • [9] A NOTE ON PERFECT PACKING OF SQUARES AND CUBES
    Januszewski, J.
    Zielonka, L.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 530 - 537
  • [10] Parallel covering a rhombus with squares
    Su, Chen-Yang
    Li, Xue
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 190 - 203