On Covering Segments with Unit Intervals

被引:0
|
作者
Bergren, Dan [1 ]
Eiben, Eduard [2 ]
Ganian, Robert [3 ]
Kanj, Iyad [1 ]
机构
[1] DePaul Univ, Sch Comp, Chicago, IL 60604 USA
[2] Royal Holloway Univ London, Dept Comp Sci, Egham, Surrey, England
[3] Vienna Univ Technol, Algorithms & Complex Grp, Vienna, Austria
基金
奥地利科学基金会;
关键词
Segment covering; unit intervals; NP-completeness; parameterized complexity; GRAPHS;
D O I
10.4230/LIPIcs.STACS.2020.13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] ON COVERING SEGMENTS WITH UNIT INTERVALS
    Bergren, D. A. N.
    Eiben, Eduard
    Ganian, Robert
    Kanj, Iyad
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) : 1200 - 1230
  • [2] Covering segments with unit squares
    Acharyya, Ankush
    Nandy, Subhas C.
    Pandit, Supantha
    Roy, Sasanka
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2019, 79 : 1 - 13
  • [3] Covering Segments with Unit Squares
    Acharyya, Ankush
    Nandy, Subhas C.
    Pandit, Supantha
    Roy, Sasanka
    [J]. ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 1 - 12
  • [4] Packing and Covering with Segments
    Mitchell, Joseph S. B.
    Pandit, Supantha
    [J]. WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 198 - 210
  • [5] Covering intervals with arithmetic progressions
    P. Balister
    B. Bollobás
    R. Morris
    J. Sahasrabudhe
    M. Tiba
    [J]. Acta Mathematica Hungarica, 2020, 161 : 197 - 200
  • [6] COVERING BY DISJOINT CLOSED INTERVALS
    MUNKRES, J
    WAGON, S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05): : 336 - 337
  • [7] COVERING LINE WITH RANDOM INTERVALS
    SHEPP, LA
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (03): : 163 - &
  • [8] On the covering by small random intervals
    Fan, AH
    Wu, J
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (01): : 125 - 131
  • [9] Covering intervals with arithmetic progressions
    Balister, P.
    Bollobas, B.
    Morris, R.
    Sahasrabudhe, J.
    Tiba, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 197 - 200
  • [10] Demand Hitting and Covering of Intervals
    Krupa, Datta R.
    Roy, Aniket Basu
    De, Minati
    Govindarajan, Sathish
    [J]. ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 267 - 280