On the covering by small random intervals

被引:22
|
作者
Fan, AH [1 ]
Wu, J
机构
[1] Wuhan Univ, Dept Math, Wuhan 430072, Hubei, Peoples R China
[2] Univ Picardie, CNRS, UMR 6140, LAMFA, F-80039 Amiens, France
关键词
random covering; uniform sample spacing; Hausdorff dimension;
D O I
10.1016/j.anihpb.2003.07.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the random intervals I-n = omega(n) + (0, ln) (modulo 1) with their left points omega(n) independently and uniformly distributed over the interval [0,1) = R/Z and with their lengths decreasing to zero. We prove that the Hausdorff dimension of the set (lim) over bar I-n(n) of points covered infinitely often is almost surely equal to 1/alpha when l(n) = a/n(alpha) for some a > 0 and alpha > 1. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [1] COVERING OF SMALL SETS BY RANDOM INTERVALS
    HAWKES, J
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (95): : 427 - 432
  • [2] COVERING LINE WITH RANDOM INTERVALS
    SHEPP, LA
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (03): : 163 - &
  • [3] SCARCITY OF POINT COVERING INTERVALS IN A RANDOM-COVERAGE
    FAN, AH
    KAHANE, JP
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1993, 29 (03): : 453 - 466
  • [5] THE SET OF REAL NUMBERS LEFT UNCOVERED BY RANDOM COVERING INTERVALS
    FITZSIMMONS, PJ
    FRISTEDT, B
    SHEPP, LA
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02): : 175 - 189
  • [6] ON COVERING SEGMENTS WITH UNIT INTERVALS
    Bergren, D. A. N.
    Eiben, Eduard
    Ganian, Robert
    Kanj, Iyad
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) : 1200 - 1230
  • [7] Covering intervals with arithmetic progressions
    P. Balister
    B. Bollobás
    R. Morris
    J. Sahasrabudhe
    M. Tiba
    [J]. Acta Mathematica Hungarica, 2020, 161 : 197 - 200
  • [8] COVERING BY DISJOINT CLOSED INTERVALS
    MUNKRES, J
    WAGON, S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (05): : 336 - 337
  • [9] On Covering Segments with Unit Intervals
    Bergren, Dan
    Eiben, Eduard
    Ganian, Robert
    Kanj, Iyad
    [J]. 37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [10] Covering intervals with arithmetic progressions
    Balister, P.
    Bollobas, B.
    Morris, R.
    Sahasrabudhe, J.
    Tiba, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) : 197 - 200