Sharp Bounds for the Weighted Holder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals

被引:177
|
作者
Zhao, Tie-Hong [1 ]
He, Zai-Yin [2 ]
Chu, Yu-Ming [3 ,4 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian hypergeometric function; Zero-balanced; Weighted Hö lder mean; Complete elliptic integrals; INEQUALITIES;
D O I
10.1007/s40315-020-00352-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we present the best possible bounds for the weighted Holder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p-elliptic integrals.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 50 条
  • [31] A NEW FORM OF THE GENERALIZED COMPLETE ELLIPTIC INTEGRALS
    Takeuchi, Shingo
    [J]. KODAI MATHEMATICAL JOURNAL, 2016, 39 (01) : 202 - 226
  • [32] A concavity property of generalized complete elliptic integrals
    Richards, Kendall C.
    Smith, Jordan N.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (03) : 240 - 252
  • [33] ON GENERALIZED COMPLETE ELLIPTIC INTEGRALS AND MODULAR FUNCTIONS
    Bhayo, B. A.
    Vuorinen, M.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2012, 55 : 591 - 611
  • [34] Sharp Bounds for a Generalized Logarithmic Operator Mean and Heinz Operator Mean by Weighted Ones of Classical Operator Ones
    Zhu, Ling
    [J]. MATHEMATICS, 2022, 10 (10)
  • [35] A sharp lower bound for the complete elliptic integrals of the first kind
    Zhen-Hang Yang
    Jing-Feng Tian
    Ya-Ru Zhu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [36] SHARP INEQUALITIES FOR THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS
    Jiang, Wei-Dong
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (02) : 388 - 400
  • [37] A sharp lower bound for the complete elliptic integrals of the first kind
    Yang, Zhen-Hang
    Tian, Jing-Feng
    Zhu, Ya-Ru
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [38] A POWER MEAN INEQUALITY INVOLVING THE COMPLETE ELLIPTIC INTEGRALS
    Wang, Gendi
    Zhang, Xiaohui
    Chu, Yuming
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (05) : 1661 - 1667
  • [39] An optimal power mean inequality for the complete elliptic integrals
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Qiu, Song-Liang
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (06) : 887 - 890
  • [40] Convexity of the complete elliptic integrals of the first kind with respect to Holder means
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Song-Liang
    Jiang, Yue-Ping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 1141 - 1146