Sharp Bounds for the Weighted Holder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals

被引:177
|
作者
Zhao, Tie-Hong [1 ]
He, Zai-Yin [2 ]
Chu, Yu-Ming [3 ,4 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China
[2] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
[3] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
[4] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian hypergeometric function; Zero-balanced; Weighted Hö lder mean; Complete elliptic integrals; INEQUALITIES;
D O I
10.1007/s40315-020-00352-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we present the best possible bounds for the weighted Holder mean of the zero-balanced generalized complete elliptic integrals of the first and second kinds, which are the generalizations of previous results for complete p-elliptic integrals.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 50 条
  • [41] Concavity of the complete elliptic integrals of the second kind with respect to Holder means
    Chu, Yu-Ming
    Wang, Miao-Kun
    Jiang, Yue-Ping
    Qiu, Song-Liang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 637 - 642
  • [42] Sharp generalized Seiffert mean bounds for the Toader mean of order 4
    Yanlin Li
    Tiehong Zhao
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [43] Sharp generalized Seiffert mean bounds for the Toader mean of order 4
    Li, Yanlin
    Zhao, Tiehong
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [44] SOME BOUNDS FOR THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS
    Guo, Bai-Ni
    Qi, Feng
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (02): : 323 - 334
  • [45] Monotonicity properties and bounds for the complete p-elliptic integrals
    Huang, Xi-Fan
    Wang, Miao-Kun
    Shao, Hao
    Zhao, Yi-Fan
    Chu, Yu-Ming
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 7071 - 7086
  • [46] Monotonicity properties and bounds for the complete p-elliptic integrals
    Huang, Ti-Ren
    Tan, Shen-Yang
    Ma, Xiao-Yan
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [47] Monotonicity properties and bounds for the complete p-elliptic integrals
    Ti-Ren Huang
    Shen-Yang Tan
    Xiao-Yan Ma
    Yu-Ming Chu
    [J]. Journal of Inequalities and Applications, 2018
  • [48] Turan type inequalities for generalized complete elliptic integrals
    Baricz, Arpad
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) : 895 - 911
  • [49] SHARP BOUNDS FOR THE NEUMAN-SANDOR MEAN IN TERMS OF GENERALIZED LOGARITHMIC MEAN
    Li, Yong-Min
    Long, Bo-Yong
    Chu, Yu-Ming
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04): : 567 - 577
  • [50] Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean
    Yu-Ming Chu
    Tie-Hong Zhao
    [J]. Journal of Inequalities and Applications, 2015