A sharp lower bound for the complete elliptic integrals of the first kind

被引:8
|
作者
Yang, Zhen-Hang [1 ,2 ]
Tian, Jing-Feng [3 ]
Zhu, Ya-Ru [3 ]
机构
[1] North China Elect Power Univ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Minist Educ, Yonghua St 619, Baoding 071003, Peoples R China
[2] Zhejiang Elect Power Co, Res Inst, Hangzhou 310014, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Yonghua St 619, Baoding 071003, Peoples R China
关键词
Arithmetic-geometric mean; Logarithmic mean; Complete elliptic integrals of the first kind; Inverse hyperbolic tangent function; NP type power series; Inequality; FUNCTIONAL INEQUALITIES; MONOTONICITY; CONVEXITY;
D O I
10.1007/s13398-020-00949-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K(r) be the complete elliptic integrals of the first kind and arthr denote the inverse hyperbolic tangent function. We prove that the inequality 2/pi K(r) > [1 - lambda +lambda (arthr/r)(q)](1/q) holds for r is an element of (0, 1) with the best constants lambda = 3/4 and q = 1/10. This improves some known results and gives a positive answer for a conjecture on the best upper bound for the Gaussian arithmetic-geometric mean in terms of logarithmic and arithmetic means.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] A sharp lower bound for the complete elliptic integrals of the first kind
    Zhen-Hang Yang
    Jing-Feng Tian
    Ya-Ru Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [2] Sharp bounds for generalized elliptic integrals of the first kind
    Wang, Miao-Kun
    Chu, Yu-Ming
    Qiu, Song-Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (02) : 744 - 757
  • [3] Sharp inequalities for the generalized elliptic integrals of the first kind
    Yang, Zhen-Hang
    Tian, Jingfeng
    RAMANUJAN JOURNAL, 2019, 48 (01): : 91 - 116
  • [4] Sharp inequalities for the generalized elliptic integrals of the first kind
    Zhen-Hang Yang
    Jingfeng Tian
    The Ramanujan Journal, 2019, 48 : 91 - 116
  • [5] Monotonicity and sharp inequalities related to complete (p, q)-elliptic integrals of the first kind
    Wang, Fei
    Qi, Feng
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (08) : 961 - 970
  • [6] Bounds for complete elliptic integrals of the first kind
    Andras, Szilard
    Baricz, Arpad
    EXPOSITIONES MATHEMATICAE, 2010, 28 (04) : 357 - 364
  • [8] SHARP INEQUALITIES FOR THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS
    Jiang, Wei-Dong
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2023, 17 (02) : 388 - 400
  • [9] Evaluation of complete elliptic integrals of the first kind at singular moduli
    Muzaffar, Habib
    Williams, Kenneth S.
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06): : 1633 - 1660
  • [10] Sharp estimates for complete elliptic integrals
    Qiu, SL
    Vamanamurthy, MK
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (03) : 823 - 834