A sharp lower bound for the complete elliptic integrals of the first kind

被引:8
|
作者
Yang, Zhen-Hang [1 ,2 ]
Tian, Jing-Feng [3 ]
Zhu, Ya-Ru [3 ]
机构
[1] North China Elect Power Univ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Minist Educ, Yonghua St 619, Baoding 071003, Peoples R China
[2] Zhejiang Elect Power Co, Res Inst, Hangzhou 310014, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Yonghua St 619, Baoding 071003, Peoples R China
关键词
Arithmetic-geometric mean; Logarithmic mean; Complete elliptic integrals of the first kind; Inverse hyperbolic tangent function; NP type power series; Inequality; FUNCTIONAL INEQUALITIES; MONOTONICITY; CONVEXITY;
D O I
10.1007/s13398-020-00949-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K(r) be the complete elliptic integrals of the first kind and arthr denote the inverse hyperbolic tangent function. We prove that the inequality 2/pi K(r) > [1 - lambda +lambda (arthr/r)(q)](1/q) holds for r is an element of (0, 1) with the best constants lambda = 3/4 and q = 1/10. This improves some known results and gives a positive answer for a conjecture on the best upper bound for the Gaussian arithmetic-geometric mean in terms of logarithmic and arithmetic means.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Approximation for the complete elliptic integral of the first kind
    Qian, Wei-Mao
    He, Zai-Yin
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [42] NOTES ON THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Zhang, Wen
    Chu, Yu-Ming
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 77 - 93
  • [43] Approximation for the complete elliptic integral of the first kind
    Wei-Mao Qian
    Zai-Yin He
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [44] Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind
    Yang, Zhen-Hang
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 929 - 936
  • [45] Concavity of the complete elliptic integrals of the second kind with respect to Holder means
    Chu, Yu-Ming
    Wang, Miao-Kun
    Jiang, Yue-Ping
    Qiu, Song-Liang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 637 - 642
  • [46] A Rational Approximation for the Complete Elliptic Integral of the First Kind
    Yang, Zhen-Hang
    Tian, Jingfeng
    Zhu, Ya-Ru
    MATHEMATICS, 2020, 8 (04)
  • [47] A Natural Approximation to the Complete Elliptic Integral of the First Kind
    Zhu, Ling
    MATHEMATICS, 2022, 10 (09)
  • [48] A concavity property of the complete elliptic integral of the first kind
    Alzer, Horst
    Richards, Kendall C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (09) : 758 - 768
  • [49] Complete hyperelliptic integrals of the first kind and their non-oscillation
    Gavrilov, L
    Iliev, ID
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) : 1185 - 1207
  • [50] Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind
    Miao-Kun Wang
    Zai-Yin He
    Yu-Ming Chu
    Computational Methods and Function Theory, 2020, 20 : 111 - 124