Spatio-temporal mixture process estimation to detect dynamical changes in population

被引:0
|
作者
Pruilh, Solange [1 ,2 ]
Jannot, Anne-Sophie [2 ,3 ]
Allassonniere, Stephanie [1 ,2 ]
机构
[1] Ecole Polytech, Ctr Appl Math, Route Saclay, F-91128 Palaiseau, France
[2] Sorbonne Univ, Univ Paris, INRIA, INSERM,UMR S1138, Paris, France
[3] Hop Europeen Georges Pompidou, AP HP, Dept Stat Med Informat & Publ Hlth, Paris, France
关键词
Gaussian Mixture Model; EM algorithms; Spatio-temporal data; SPATIAL EPIDEMIOLOGY; EM;
D O I
10.1016/j.artmed.2022.102258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatiotemporal data changes. Assuming that mixture models can correctly model populations, we propose a new version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Estimation of a continuous spatio-temporal population model
    Alvarez, Javier
    Mossay, Pascal
    [J]. JOURNAL OF GEOGRAPHICAL SYSTEMS, 2006, 8 (03) : 307 - 316
  • [2] Estimation of a continuous spatio-temporal population model
    Javier Alvarez
    Pascal Mossay
    [J]. Journal of Geographical Systems, 2006, 8 : 307 - 316
  • [3] Sparse network estimation for dynamical spatio-temporal array models
    Lund, Adam
    Hansen, Niels Richard
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 174
  • [4] Research on Dynamical Visualization of the Spatio-temporal Process of Seawater Temperature and Salinity
    Liu, Jian
    Zhang, Xin
    Jian, Xiaoyi
    Jiang, Bing
    Chi, Titanhe
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1167 - 1170
  • [5] Research progress on spatio-temporal distribution estimation of urban population
    Wu, Huayi
    Hu, Qiushi
    Li, Rui
    Liu, Zhaohui
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (09): : 1827 - 1847
  • [6] Urban population density estimation based on spatio-temporal trajectories
    Xue, Fei
    Cao, Yang
    Ding, Zhiming
    Tang, Hengliang
    Yang, Xi
    Chen, Lei
    Li, Juntao
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (14):
  • [7] Estimation of spatial derivatives and identification cation of continuous spatio-temporal dynamical systems
    Guo, L. Z.
    Billings, S. A.
    Wei, H. L.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (09) : 1118 - 1135
  • [8] Learning Spatio-Temporal Specifications for Dynamical Systems
    Alsalehi, Suhail
    Aasi, Erfan
    Weiss, Ron
    Belta, Calin
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [9] Characterization of spatio-temporal changes prior to epileptic seizure by a measure of dynamical similarity
    Van Quyen, ML
    Martinerie, J
    [J]. THEORY IN BIOSCIENCES, 1999, 118 (3-4) : 199 - 208
  • [10] Estimation of Spatio-Temporal Correlations of Prehistoric Population and Vegetation in North America
    Kriesche, Bjoern
    Chaput, Michelle A.
    Kulik, Rafal
    Gajewski, Konrad
    Schmidt, Volker
    [J]. GEOGRAPHICAL ANALYSIS, 2020, 52 (03) : 371 - 393