Yang-Baxter equations with two Planck constants

被引:8
|
作者
Levin, A. [1 ,2 ]
Olshanetsky, M. [2 ,3 ,4 ]
Zotov, A. [2 ,3 ,5 ]
机构
[1] NRU HSE, Dept Math, Myasnitskaya Str 20, Moscow 101000, Russia
[2] ITEP, Moscow 117218, Russia
[3] MIPT, Dolgoprudnyi 141700, Moscow Region, Russia
[4] RAS, IITP Kharkevich Inst, Moscow 127994, Russia
[5] RAS, Steklov Math Inst, Moscow 119991, Russia
关键词
quantum R-matrices; Yang-Baxter equation; integrable systems; R-MATRIX;
D O I
10.1088/1751-8113/49/1/014003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Yang-Baxter equations arising from its associative analog and study the corresponding exchange relations. They generate finite-dimensional quantum algebras which have the form of coupled GL(N) Sklyanin elliptic algebras. Then we proceed to a natural generalization of the Baxter-Belavin quantum R-matrix to the case Mat(N, C)(circle times 2) circle times Mat(M, C)(circle times 2). It can be viewed as symmetric form of GL(NM) R-matrix in the sense that the Planck constant and the spectral parameter enter (almost) symmetrically. Such type (symmetric) R-matrices are also shown to satisfy the Yang-Baxter like quadratic and cubic equations.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On triple systems and Yang-Baxter equations
    Kamiya, N
    Okubo, S
    [J]. SEVENTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, PROCEEDINGS, 1997, : 189 - 196
  • [2] Stokes Phenomenon and Yang-Baxter Equations
    Xu, Xiaomeng
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (01) : 149 - 159
  • [3] QUANTUM AND CLASSICAL YANG-BAXTER EQUATIONS
    KOSMANNSCHWARZBACH, Y
    [J]. MODERN PHYSICS LETTERS A, 1990, 5 (13) : 981 - 990
  • [4] MAGNETIC MONOPOLES AND THE YANG-BAXTER EQUATIONS
    ATIYAH, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (16): : 2761 - 2774
  • [5] THE YANG-BAXTER EQUATIONS AND THE ZAMOLODCHIKOV MODEL
    BAXTER, RJ
    [J]. PHYSICA D, 1986, 18 (1-3): : 321 - 347
  • [6] YANG-BAXTER EQUATIONS IN QUANTUM INFORMATION
    Ge, Mo-Lin
    Xue, Kang
    [J]. KOREPIN FESTSCHRIFT: FROM STATISTICAL MECHANICS TO QUANTUM INFORMATION SCIENCE: A COLLECTION OF ARTICLES WRITTEN IN HONOR OF THE 60TH BIRTHDAY OF VLADIMIR KOREPIN, 2013, : 85 - 103
  • [7] THE YANG-BAXTER EQUATIONS AND DIFFERENTIAL IDENTITIES
    PU, FC
    SATTINGER, DH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 118 - 126
  • [8] Yang-Baxter equations and quantum entanglements
    Ge, Mo-Lin
    Xue, Kang
    Zhang, Ruo-Yang
    Zhao, Qing
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (12) : 5211 - 5242
  • [9] Nonhomogeneous associative Yang-Baxter equations
    Ma, Tianshui
    Li, Jie
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 97 - 118
  • [10] Yang-Baxter integrable Lindblad equations
    Ziolkowska, Aleksandra A.
    Essler, Fabian H. L.
    [J]. SCIPOST PHYSICS, 2020, 8 (03):