Yang-Baxter equations with two Planck constants

被引:8
|
作者
Levin, A. [1 ,2 ]
Olshanetsky, M. [2 ,3 ,4 ]
Zotov, A. [2 ,3 ,5 ]
机构
[1] NRU HSE, Dept Math, Myasnitskaya Str 20, Moscow 101000, Russia
[2] ITEP, Moscow 117218, Russia
[3] MIPT, Dolgoprudnyi 141700, Moscow Region, Russia
[4] RAS, IITP Kharkevich Inst, Moscow 127994, Russia
[5] RAS, Steklov Math Inst, Moscow 119991, Russia
关键词
quantum R-matrices; Yang-Baxter equation; integrable systems; R-MATRIX;
D O I
10.1088/1751-8113/49/1/014003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Yang-Baxter equations arising from its associative analog and study the corresponding exchange relations. They generate finite-dimensional quantum algebras which have the form of coupled GL(N) Sklyanin elliptic algebras. Then we proceed to a natural generalization of the Baxter-Belavin quantum R-matrix to the case Mat(N, C)(circle times 2) circle times Mat(M, C)(circle times 2). It can be viewed as symmetric form of GL(NM) R-matrix in the sense that the Planck constant and the spectral parameter enter (almost) symmetrically. Such type (symmetric) R-matrices are also shown to satisfy the Yang-Baxter like quadratic and cubic equations.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [21] Remarks on rational solutions of Yang-Baxter equations
    Henrich, Thilo
    ALGEBRA, GEOMETRY, AND MATHEMATICAL PHYSICS 2010, 2012, 346
  • [22] BETHE ANSATZ AND THE GENERALIZED YANG-BAXTER EQUATIONS
    GUTKIN, E
    ANNALS OF PHYSICS, 1987, 176 (01) : 22 - 48
  • [23] The Yang-Baxter transformation
    Bukhshtaber, VM
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (06) : 1343 - 1345
  • [24] AUTOMORPHISMS OF ALGEBRAIC-VARIETIES AND YANG-BAXTER EQUATIONS
    MAILLARD, JM
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2776 - 2781
  • [25] Yang-Baxter endomorphisms
    Conti, Roberto
    Lechner, Gandalf
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (02): : 633 - 671
  • [26] Yang-Baxter type equations and posets of maximal chains
    Lawrence, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 79 (01) : 68 - 104
  • [27] ON YANG-BAXTER GROUPS
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Jimenez-Seral, P.
    Perez-Calabuig, V.
    QUAESTIONES MATHEMATICAE, 2023, 46 (07) : 1273 - 1281
  • [28] Automorphisms of the Yang-Baxter equations for the chiral Potts model
    Neeman, A
    Shepherd-Barron, NI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : L715 - L720
  • [29] Universal solutions of quantum dynamical Yang-Baxter equations
    Arnaudon, D
    Buffenoir, E
    Ragoucy, E
    Roche, P
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (03) : 201 - 214
  • [30] CONSTANT QUASICLASSICAL SOLUTIONS TO YANG-BAXTER QUANTUM EQUATIONS
    DRINFELD, VG
    DOKLADY AKADEMII NAUK SSSR, 1983, 273 (03): : 531 - 535