Yang-Baxter equations with two Planck constants

被引:8
|
作者
Levin, A. [1 ,2 ]
Olshanetsky, M. [2 ,3 ,4 ]
Zotov, A. [2 ,3 ,5 ]
机构
[1] NRU HSE, Dept Math, Myasnitskaya Str 20, Moscow 101000, Russia
[2] ITEP, Moscow 117218, Russia
[3] MIPT, Dolgoprudnyi 141700, Moscow Region, Russia
[4] RAS, IITP Kharkevich Inst, Moscow 127994, Russia
[5] RAS, Steklov Math Inst, Moscow 119991, Russia
关键词
quantum R-matrices; Yang-Baxter equation; integrable systems; R-MATRIX;
D O I
10.1088/1751-8113/49/1/014003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Yang-Baxter equations arising from its associative analog and study the corresponding exchange relations. They generate finite-dimensional quantum algebras which have the form of coupled GL(N) Sklyanin elliptic algebras. Then we proceed to a natural generalization of the Baxter-Belavin quantum R-matrix to the case Mat(N, C)(circle times 2) circle times Mat(M, C)(circle times 2). It can be viewed as symmetric form of GL(NM) R-matrix in the sense that the Planck constant and the spectral parameter enter (almost) symmetrically. Such type (symmetric) R-matrices are also shown to satisfy the Yang-Baxter like quadratic and cubic equations.
引用
下载
收藏
页数:19
相关论文
共 50 条