Robust fitting of mixtures of factor analyzers using the trimmed likelihood estimator

被引:4
|
作者
Yang, Li [1 ]
Xiang, Sijia [2 ]
Yao, Weixin [3 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[2] Zhejiang Univ Finance & Econ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
关键词
EM algorithm; Factor analysis; Mixture models; Robustness; Trimmed likelihood estimator; ADAPTIVE CHOICE; FINITE MIXTURES;
D O I
10.1080/03610918.2014.999088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 50 条