Convolutional Neural Networks for Pathological Voice Detection

被引:0
|
作者
Wu, Huiyi [1 ]
Soraghan, John [1 ]
Lowit, Anja [2 ]
Di Caterina, Gaetano [1 ]
机构
[1] Univ Strathclyde, Ctr Signal & Image Proc, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[2] Univ Strathclyde, Sch Psychol Sci & Hlth, Speech & Language Therapy, Glasgow G1 1QE, Lanark, Scotland
关键词
AUTOMATIC DETECTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acoustic analysis using signal processing tools can be used to extract voice features to distinguish whether a voice is pathological or healthy. The proposed work uses spectrogram of voice recordings from a voice database as the input to a Convolutional Neural Network (CNN) for automatic feature extraction and classification of disordered and normal voice. The novel classifier achieved 88.5%, 66.2% and 77.0% accuracy on training, validation and testing data set respectively on 482 normal and 482 organic dysphonia speech files. It reveals that the proposed novel algorithm on the Saarbruecken Voice Database can effectively been used for screening pathological voice recordings.
引用
收藏
页码:4784 / 4787
页数:4
相关论文
共 50 条
  • [31] Anomaly detection with convolutional Graph Neural Networks
    Oliver Atkinson
    Akanksha Bhardwaj
    Christoph Englert
    Vishal S. Ngairangbam
    Michael Spannowsky
    Journal of High Energy Physics, 2021
  • [32] Parallel Convolutional Neural Networks for Object Detection
    Olugboja, Adedeji
    Wang, Zenghui
    Sun, Yanxia
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (04) : 279 - 286
  • [33] Audio Recapture Detection With Convolutional Neural Networks
    Lin, Xiaodan
    Liu, Jingxian
    Kang, Xiangui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1480 - 1487
  • [34] CONVOLUTIONAL NEURAL NETWORKS FOR DIABETIC RETINOPATHY DETECTION
    Patino-Perez, Darwin
    Armijos-Valarezo, Luis
    Choez-Acosta, Luis
    Burgos-Robalino, Freddy
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33):
  • [35] Vehicle Type Detection by Convolutional Neural Networks
    Molina-Cabello, Miguel A.
    Marcos Luque-Baena, Rafael
    Lopez-Rubio, Ezequiel
    Thurnhofer-Hemsi, Karl
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 268 - 278
  • [36] Anomaly detection with convolutional Graph Neural Networks
    Atkinson, Oliver
    Bhardwaj, Akanksha
    Englert, Christoph
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [37] Deep Convolutional Neural Networks for DGA Detection
    Catania, Carlos
    Garcia, Sebastian
    Torres, Pablo
    COMPUTER SCIENCE - CACIC 2018, 2019, 995 : 327 - 340
  • [38] Balanced Convolutional Neural Networks for Pneumoconiosis Detection
    Hao, Chaofan
    Jin, Nan
    Qiu, Cuijuan
    Ba, Kun
    Wang, Xiaoxi
    Zhang, Huadong
    Zhao, Qi
    Huang, Biqing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (17)
  • [39] Firearm Detection using Convolutional Neural Networks
    De Azevedo Kanehisa, Rodrigo Fumihiro
    Neto, Areolino De Almeida
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 707 - 714
  • [40] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027