Convolutional Neural Networks for Pathological Voice Detection

被引:0
|
作者
Wu, Huiyi [1 ]
Soraghan, John [1 ]
Lowit, Anja [2 ]
Di Caterina, Gaetano [1 ]
机构
[1] Univ Strathclyde, Ctr Signal & Image Proc, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
[2] Univ Strathclyde, Sch Psychol Sci & Hlth, Speech & Language Therapy, Glasgow G1 1QE, Lanark, Scotland
关键词
AUTOMATIC DETECTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acoustic analysis using signal processing tools can be used to extract voice features to distinguish whether a voice is pathological or healthy. The proposed work uses spectrogram of voice recordings from a voice database as the input to a Convolutional Neural Network (CNN) for automatic feature extraction and classification of disordered and normal voice. The novel classifier achieved 88.5%, 66.2% and 77.0% accuracy on training, validation and testing data set respectively on 482 normal and 482 organic dysphonia speech files. It reveals that the proposed novel algorithm on the Saarbruecken Voice Database can effectively been used for screening pathological voice recordings.
引用
收藏
页码:4784 / 4787
页数:4
相关论文
共 50 条
  • [21] Traffic Sign Detection with Convolutional Neural Networks
    Peng, Evan
    Chen, Feng
    Song, Xinkai
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, ICCSIP 2016, 2017, 710 : 214 - 224
  • [22] Revisiting Edge Detection in Convolutional Neural Networks
    Minh Le
    Kayal, Subhradeep
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Resistor Detection Based on Convolutional Neural Networks
    Liu, Chun
    Shi, Yudeng
    2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC), 2017, : 91 - 94
  • [24] Detection of landslide based on convolutional neural networks
    Zhang, Heng
    Chen, Xiaohu
    Song, Zhizhong
    Zhan, Weijie
    Lei, Huiguang
    2022 8TH INTERNATIONAL CONFERENCE ON HYDRAULIC AND CIVIL ENGINEERING: DEEP SPACE INTELLIGENT DEVELOPMENT AND UTILIZATION FORUM, ICHCE, 2022, : 736 - 739
  • [25] Automated Pothole Detection with Convolutional Neural Networks
    Kumar, V. Bhuvana
    Yedukondalu, N.
    Rao, A. Narayana
    Proceedings - 2024 5th International Conference on Image Processing and Capsule Networks, ICIPCN 2024, 2024, : 407 - 411
  • [26] Supernovae Detection by Using Convolutional Neural Networks
    Cabrera-Vives, Guillermo
    Reyes, Ignacio
    Forster, Francisco
    Estevez, Pablo A.
    Maureira, Juan-Carlos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 251 - 258
  • [27] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [28] Partial Discharge Detection with Convolutional Neural Networks
    Wang, Wei
    Yu, Nanpeng
    2020 INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2020,
  • [29] Detection of Arrhythmia Using Convolutional Neural Networks
    Greeshma, Burla
    Sireesha, Moturi
    Rao, S. N. Thirumala
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 21 - 30
  • [30] Convolutional neural networks for image spam detection
    Sharmin, Tazmina
    Di Troia, Fabio
    Potika, Katerina
    Stamp, Mark
    INFORMATION SECURITY JOURNAL, 2020, 29 (03): : 103 - 117