Statistical analysis of successive random additions for generating fractional Brownian motion

被引:15
|
作者
McGaughey, DR [1 ]
Aitken, GJM [1 ]
机构
[1] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
来源
PHYSICA A | 2000年 / 277卷 / 1-2期
基金
加拿大自然科学与工程研究理事会;
关键词
fractals; fractional Gaussian noise; exact simulation;
D O I
10.1016/S0378-4371(99)00438-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Successive random addition (SRA) is a popular and efficient algorithm for generating fractional Brownian motion (FBM). The difference of adjacent samples of FBM is called fractional Gaussian noise (FGN) and has a known self-similarity parameter H and power spectral density (PSD). For a FGN series generated from the differences of a SRA series, the intersample correlations for the first two lags are known to vary from the desired correlation. In this paper we show analytically and experimentally that the error in the correlations arises because the FGN generated from the differences of an SRA time-series is nonstationary. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 50 条
  • [1] An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions
    Lu, SL
    Molz, FJ
    Liu, HH
    [J]. COMPUTERS & GEOSCIENCES, 2003, 29 (01) : 15 - 25
  • [2] Generating Diffusions with Fractional Brownian Motion
    Hairer, Martin
    Li, Xue-Mei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (01) : 91 - 141
  • [3] Generating Diffusions with Fractional Brownian Motion
    Martin Hairer
    Xue-Mei Li
    [J]. Communications in Mathematical Physics, 2022, 396 : 91 - 141
  • [4] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [5] Statistical analysis of superstatistical fractional Brownian motion and applications
    Mackala, Arleta
    Magdziarz, Marcin
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [6] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [7] A hybrid approach for generating fractional Brownian motion
    Chen, FHM
    Mellor, J
    Mars, P
    [J]. IEEE GLOBECOM 1996 - CONFERENCE RECORD, VOLS 1-3: COMMUNICATIONS: THE KEY TO GLOBAL PROSPERITY, 1996, : 591 - 595
  • [8] On two-dimensional fractional Brownian motion and fractional Brownian random field
    Qian, H
    Raymond, GM
    Bassingthwaighte, JB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : L527 - L535
  • [9] Generating and scaling fractional Brownian motion on finite domains
    Cintoli, S
    Neuman, SP
    Di Federico, V
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (08) : 1 - 4
  • [10] Statistical characteristics of queue with fractional Brownian motion input
    Chen, J.
    Bhatia, H. S.
    Addie, R. G.
    Zukerman, M.
    [J]. ELECTRONICS LETTERS, 2015, 51 (09) : 699 - 700