Statistical analysis of superstatistical fractional Brownian motion and applications

被引:24
|
作者
Mackala, Arleta [1 ]
Magdziarz, Marcin [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Hugo Steinhaus Ctr, Fac Pure & Appl Math, Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevE.99.012143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent advances in experimental techniques for complex systems and the corresponding theoretical findings show that in many cases random parametrization of the diffusion coefficients gives adequate descriptions of the observed fractional dynamics. In this paper we introduce two statistical methods which can be effectively applied to analyze and estimate parameters of superstatistical fractional Brownian motion with random scale parameter. The first method is based on the analysis of the increments of the process, the second one takes advantage of the variation of the trajectories of the process. We prove the effectiveness of the methods using simulated data. Also, we apply it to the experimental data describing random motion of individual molecules inside the cell of E.coli. We show that fractional Brownian motion with Weibull-distributed diffusion coefficient gives adequate description of this experimental data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Superstatistical Brownian motion
    Beck, Christian
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (162): : 29 - 36
  • [2] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [3] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [4] Statistical analysis of successive random additions for generating fractional Brownian motion
    McGaughey, DR
    Aitken, GJM
    [J]. PHYSICA A, 2000, 277 (1-2): : 25 - 34
  • [5] Superstatistical approach of the anomalous exponent for scaled Brownian motion
    dos Santos, M. A. F.
    Menon, L.
    Cius, D.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 164
  • [6] Statistical characteristics of queue with fractional Brownian motion input
    Chen, J.
    Bhatia, H. S.
    Addie, R. G.
    Zukerman, M.
    [J]. ELECTRONICS LETTERS, 2015, 51 (09) : 699 - 700
  • [7] The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm
    Runfola, C.
    Vitali, S.
    Pagnini, G.
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (11):
  • [8] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    [J]. POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [9] Stochastic Analysis of the Fractional Brownian Motion
    L. Decreusefond
    A.S. üstünel
    [J]. Potential Analysis, 1999, 10 : 177 - 214
  • [10] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    [J]. ECONOMICS LETTERS, 2016, 145 : 52 - 55