Statistical characteristics of queue with fractional Brownian motion input

被引:3
|
作者
Chen, J. [1 ]
Bhatia, H. S. [2 ]
Addie, R. G. [2 ]
Zukerman, M. [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[2] Univ So Queensland, Dept Math & Comp, Toowoomba, Qld 4350, Australia
关键词
GAMMA-DISTRIBUTION;
D O I
10.1049/el.2015.0349
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The factional Brownian motion has attracted significant attention because it accurately represents Internet traffic characteristics and is amenable to analysis. A link between the probability density function of the steady-state queue size of a queue with a fractional Brownian input and the generalised Gamma distribution is discovered, and the mean, variance, third central moment and skewness are provided. New simulation results that validate the accuracy of these queueing statistics are also provided.
引用
收藏
页码:699 / 700
页数:2
相关论文
共 50 条
  • [1] Large buffer asymptotics for the queue with fractional Brownian input
    Massoulie, L
    Simonian, A
    [J]. JOURNAL OF APPLIED PROBABILITY, 1999, 36 (03) : 894 - 906
  • [2] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [3] On the maximum workload of a queue fed by fractional Brownian motion
    Zeevi, AJ
    Glynn, PW
    [J]. ANNALS OF APPLIED PROBABILITY, 2000, 10 (04): : 1084 - 1099
  • [4] Performance evaluation and service rate provisioning for a queue with fractional Brownian input
    Chen, Jiongze
    Addie, Ronald G.
    Zukerman, Moshe
    [J]. PERFORMANCE EVALUATION, 2013, 70 (11) : 1028 - 1045
  • [5] Exact asymptotics for a queue with fractional Brownian input and applications in ATM networks
    Duncan, TE
    Yan, Y
    Yan, P
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 932 - 945
  • [6] Bilinear stochastic systems with fractional Brownian motion input
    Iglói, E
    Terdik, G
    [J]. ANNALS OF APPLIED PROBABILITY, 1999, 9 (01): : 46 - 77
  • [7] On the supremum of γ-reflected processes with fractional Brownian motion as input
    Hashorva, Enkelejd
    Ji, Lanpeng
    Piterbarg, Vladimir I.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 4111 - 4127
  • [8] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [9] Statistical analysis of superstatistical fractional Brownian motion and applications
    Mackala, Arleta
    Magdziarz, Marcin
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [10] On average losses in the ruin problem with fractional Brownian motion as input
    Boulongne, Patrick
    Pierre-Loti-Viaud, Daniel
    Piterbarg, Vladimir
    [J]. EXTREMES, 2009, 12 (01) : 77 - 91