Statistical study of the wavelet analysis of fractional Brownian motion

被引:38
|
作者
Bardet, JM [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabilite, F-31062 Toulouse, France
关键词
estimation of the self-similarity index; fractional Brownian motion; self-similarity; wavelet analysis;
D O I
10.1109/18.992817
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a statistical study of wavelet coefficients of a fractional Brownian motion. A central limit theorem for empirical variances of exact wavelet coefficients is given. Under conditions on the mother wavelet and the choice of scales, a limit theorem is given for fitted wavelet coefficients computed from a time series. It provides an estimator for the self-similarity parameter of Gaussian time series.
引用
收藏
页码:991 / 999
页数:9
相关论文
共 50 条
  • [1] WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 592 - 604
  • [2] WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION
    FLANDRIN, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 910 - 917
  • [3] On wavelet analysis of the nth order fractional Brownian motion
    Hedi Kortas
    Zouhaier Dhifaoui
    Samir Ben Ammou
    [J]. Statistical Methods & Applications, 2012, 21 : 251 - 277
  • [4] On wavelet analysis of the nth order fractional Brownian motion
    Kortas, Hedi
    Dhifaoui, Zouhaier
    Ben Ammou, Samir
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (03): : 251 - 277
  • [5] Wavelet synthesis of fractional Brownian motion
    Hu, G
    Zhu, SH
    Xie, B
    [J]. 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 349 - 352
  • [6] Statistical analysis of superstatistical fractional Brownian motion and applications
    Mackala, Arleta
    Magdziarz, Marcin
    [J]. PHYSICAL REVIEW E, 2019, 99 (01)
  • [7] Definition, properties and wavelet analysis of multiscale fractional brownian motion
    Bardet, Jean-Marc
    Bertrand, Pierre
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2007, 15 (01) : 73 - 87
  • [8] Statistical inference with fractional Brownian motion
    Kukush A.
    Mishura Y.
    Valkeila E.
    [J]. Statistical Inference for Stochastic Processes, 2005, 8 (1) : 71 - 93
  • [9] ON THE WAVELET TRANSFORM OF FRACTIONAL BROWNIAN-MOTION
    RAMANATHAN, J
    ZEITOUNI, O
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) : 1156 - 1158
  • [10] Wavelet estimation for operator fractional Brownian motion
    Abry, Patrice
    Didier, Gustavo
    [J]. BERNOULLI, 2018, 24 (02) : 895 - 928