Definition, properties and wavelet analysis of multiscale fractional brownian motion

被引:16
|
作者
Bardet, Jean-Marc
Bertrand, Pierre
机构
[1] Univ Paris 01, CNRS, UMR 8174, CES MATISSE SAMOS, F-75013 Paris, France
[2] Univ Blaise Pascal Clermont Ferrand II, Math Lab, CNRS, UMR 6620, F-63117 Aubiere, France
关键词
fractional Brownian motion; long-range dependence; path regularity; self-similarity; wavelet analysis; functional central limit theorem;
D O I
10.1142/S0218348X07003356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In some applications, for instance,finance, biomechanics, turbulence or internet traffic, it is relevant to model data with a generalization of a fractional Brownian motion for which the Hurst parameter H is dependent on the frequency. In this contribution, we describe the multiscale fractional Brownian motions which present a parameter H as a piecewise constant function of the frequency. We provide the main properties of these processes: long-memory and smoothness of the paths. Then we propose a statistical method based on wavelet analysis to estimate the different parameters and prove a functional Central Limit Theorem satisfied by the empirical variance of the wavelet coefficients.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 50 条
  • [1] WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 592 - 604
  • [2] Statistical study of the wavelet analysis of fractional Brownian motion
    Bardet, JM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 991 - 999
  • [3] WAVELET ANALYSIS AND SYNTHESIS OF FRACTIONAL BROWNIAN-MOTION
    FLANDRIN, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 910 - 917
  • [4] On wavelet analysis of the nth order fractional Brownian motion
    Kortas, Hedi
    Dhifaoui, Zouhaier
    Ben Ammou, Samir
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (03): : 251 - 277
  • [5] On wavelet analysis of the nth order fractional Brownian motion
    Hedi Kortas
    Zouhaier Dhifaoui
    Samir Ben Ammou
    [J]. Statistical Methods & Applications, 2012, 21 : 251 - 277
  • [6] Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties
    Jelena Ryvkina
    [J]. Journal of Theoretical Probability, 2015, 28 : 866 - 891
  • [7] Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties
    Ryvkina, Jelena
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (03) : 866 - 891
  • [8] Convergence properties of wavelet series expansions of fractional Brownian motion
    Masry, E
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (03) : 239 - 253
  • [9] Wavelet synthesis of fractional Brownian motion
    Hu, G
    Zhu, SH
    Xie, B
    [J]. 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 349 - 352
  • [10] A new look at the fractional Brownian motion definition
    Ortigueira, Manuel Duarte
    Batista, Arnaldo Guimaraes
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 275 - 283