Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties

被引:7
|
作者
Ryvkina, Jelena [1 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
Fractional Brownian motion; Gaussian processes; Variable Hurst parameter; Self-similarity; Sample path regularity; RANDOM-WALKS; LONG-MEMORY; TIME; RESPECT;
D O I
10.1007/s10959-013-0502-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A class of Gaussian processes generalizing the usual fractional Brownian motion for Hurst indices in (1/2,1) and multifractal Brownian motion introduced in Ralchenko and Shevchenko (2010 Theory Probab Math Stat 80:119-130) and Boufoussi et al. (Bernoulli 16(4):1294-1311, 2010) is presented. Any measurable function assuming values in this interval can now be chosen as a variable Hurst parameter. These processes allow for modeling of phenomena where the regularity properties can change with time either continuously or through jumps, such as in the volatility of a stock or in Internet traffic. Some properties of the sample paths of the new process class, including different types of continuity and long-range dependence, are discussed. It is found that the regularity properties of the Hurst function chosen directly correspond to the regularity properties of the sample paths of the processes. The long-range dependence property of fractional Brownian motion is preserved in the larger process class. As an application, Fokker-Planck-type equations for a time-changed fractional Brownian motion with variable Hurst parameter are found.
引用
收藏
页码:866 / 891
页数:26
相关论文
共 50 条
  • [1] Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties
    Jelena Ryvkina
    [J]. Journal of Theoretical Probability, 2015, 28 : 866 - 891
  • [2] Bayesian estimation of the Hurst parameter of fractional Brownian motion
    Chen, Chen-Yueh
    Shafie, Khalil
    Lin, Yen-Kuang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4760 - 4766
  • [3] Simulation of Fractional Brownian Motion and Estimation of Hurst Parameter
    Pashko, Anatolii
    Sinyayska, Olga
    Oleshko, Tetiana
    [J]. 15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 632 - 637
  • [4] Exact confidence intervals for the Hurst parameter of a fractional Brownian motion
    Breton, Jean-Christophe
    Nourdin, Ivan
    Peccati, Giovanni
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 416 - 425
  • [5] Fractional Brownian motion with two-variable Hurst exponent
    Almani, H. Maleki
    Hosseini, S. M.
    Tahmasebi, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 388
  • [6] Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint
    Neuman, Eyal
    Rosenbaum, Mathieu
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [7] Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method
    Yerlikaya-Ozkurt, F.
    Vardar-Acar, C.
    Yolcu-Okur, Y.
    Weber, G. -W.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 843 - 850
  • [8] On the maximum of the discretely sampled fractional Brownian motion with small Hurst parameter
    Borovkov, Konstantin
    Zhitlukhin, Mikhail
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
  • [9] Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion
    Kim, Yoon Tae
    Park, Hyun Suk
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 105 : 181 - 188
  • [10] Continuity in the Hurst parameter of the law of the Wiener integral with respect to the fractional Brownian motion
    Jolis, Maria
    Viles, Noelia
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (7-8) : 566 - 572