Edge-face chromatic number of 2-connected plane graphs with high maximum degree

被引:0
|
作者
Zhang Zhongfu [1 ]
Wang Weifan
Li Jingwen
Yao Bing
Bu Yuehua
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
[3] ZheJiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] Lanzhou Jiaotong Univ, Sch Informat & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
plane graph; edge-face chromatic number; edge chromatic number; maximum degree;
D O I
10.1016/S0252-9602(06)60072-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edge-face chromatic number chi (ef) (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with Delta(G) >= \G\ - 2 >= 9 has chi(ef) (G) = Delta(G).
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [21] Chromatic uniqueness in a family of 2-connected graphs
    Bielak, H
    DISCRETE MATHEMATICS, 1997, 164 (1-3) : 21 - 28
  • [22] Graphs with chromatic number close to maximum degree
    Kostochka, Alexandr. V.
    Rabern, Landon
    Stiebitz, Michael
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1273 - 1281
  • [23] EVERY PLANE GRAPH OF MAXIMUM DEGREE 8 HAS AN EDGE-FACE 9-COLORING
    Kang, Ross J.
    Sereni, Jean-Sebastien
    Stehlik, Matej
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 514 - 533
  • [24] 2-Connected spanning subgraphs with low maximum degree in locally planar graphs
    Ellingham, M. N.
    Kawarabayashi, Ken-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 401 - 412
  • [25] 2-connected and 2-edge-connected Steinhaus graphs
    Kim, D
    Lim, D
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 257 - 265
  • [26] A 6-COLOR THEOREM FOR THE EDGE-FACE COLORING OF PLANE GRAPHS
    LIN, CQ
    HU, GZ
    ZHANG, ZF
    DISCRETE MATHEMATICS, 1995, 141 (1-3) : 291 - 297
  • [27] A seven-color theorem on edge-face coloring of plane graphs
    Wang, WF
    Zhang, KM
    ACTA MATHEMATICA SCIENTIA, 2001, 21 (02) : 243 - 248
  • [28] Entire coloring of 2-connected plane graphs
    Wang, Weifan
    Hu, Xiaoxue
    Wang, Yiqiao
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94
  • [29] A conjecture on the lower bound of the signed edge domination number of 2-connected graphs
    Feng, Xing
    Ge, Jun
    DISCRETE APPLIED MATHEMATICS, 2021, 302 : 42 - 45
  • [30] A SEVEN-COLOR THEOREM ON EDGE-FACE COLORING OF PLANE GRAPHS
    王维凡
    张克民
    ActaMathematicaScientia, 2001, (02) : 243 - 248