Edge-face chromatic number of 2-connected plane graphs with high maximum degree

被引:0
|
作者
Zhang Zhongfu [1 ]
Wang Weifan
Li Jingwen
Yao Bing
Bu Yuehua
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
[3] ZheJiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] Lanzhou Jiaotong Univ, Sch Informat & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
plane graph; edge-face chromatic number; edge chromatic number; maximum degree;
D O I
10.1016/S0252-9602(06)60072-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edge-face chromatic number chi (ef) (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with Delta(G) >= \G\ - 2 >= 9 has chi(ef) (G) = Delta(G).
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [31] The rainbow connection number of 2-connected graphs
    Ekstein, Jan
    Holub, Premysl
    Kaiser, Tomas
    Koch, Maria
    Camacho, Stephan Matos
    Ryjacek, Zdenek
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2013, 313 (19) : 1884 - 1892
  • [32] The average degree of edge chromatic critical graphs with maximum degree seven
    Cao, Yan
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    arXiv, 2023,
  • [33] The average degree of edge chromatic critical graphs with maximum degree seven
    Cao, Yan
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 517 - 541
  • [34] The chromatic index of graphs of high maximum degree
    Chew, KH
    DISCRETE MATHEMATICS, 1996, 162 (1-3) : 77 - 91
  • [35] On 2-connected spanning subgraphs with low maximum degree
    Sanders, DP
    Zhao, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (01) : 64 - 86
  • [36] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171
  • [37] TOTAL CHROMATIC NUMBER OF GRAPHS OF HIGH DEGREE .2.
    YAP, HP
    CHEW, KH
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 53 : 219 - 228
  • [38] The incidence chromatic number of 2-connected 1-trees
    Duan, Hua
    Zeng, Qingtian
    Han, Congying
    Lian, Wenjun
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 443 - +
  • [39] TOTAL CHROMATIC NUMBER OF GRAPHS OF HIGH DEGREE
    叶宏博
    王建芳
    张忠辅
    ChineseScienceBulletin, 1990, (17) : 1492 - 1492
  • [40] TOTAL CHROMATIC NUMBER OF GRAPHS OF HIGH DEGREE
    YE, HB
    WANG, JF
    ZHANG, ZF
    CHINESE SCIENCE BULLETIN, 1990, 35 (17): : 1492 - 1492