Graphs with chromatic number close to maximum degree

被引:18
|
作者
Kostochka, Alexandr. V. [2 ,3 ]
Rabern, Landon [4 ]
Stiebitz, Michael [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Graph coloring; Brooks' theorem; Critical graphs;
D O I
10.1016/j.disc.2011.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a color-critical graph with chi (G) >= Delta(G) = 2t + 1 >= 5 such that the subgraph of G induced by the vertices of degree 2t + 1 has clique number at most t - 1. We prove that then either t >= 3 and G = K2t+2 or t = 2 and G epsilon {K-6, O-5}, where O-5 is a special graph with chi(O-5) = 5 and vertical bar O-5 vertical bar = 9. This result for t >= 3 improves a case of a theorem by Rabern (2012)[9] and for t = 2 answers a question raised by Kierstead and Kostochka (2009) in [6]. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1273 / 1281
页数:9
相关论文
共 50 条