An in-depth evaluation framework for spatio-temporal features

被引:0
|
作者
Stottinger, Julian [1 ]
Bhatti, Naeem [2 ]
Hanbury, Allan [3 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, I-38100 Trento, Italy
[2] Quaid I Azam Univ, Dept Elect, Islamabad, Pakistan
[3] Vienna Univ Technol, Inst Informat Syst Engn, Favoritenstr 9-11-194-04, A-1040 Vienna, Austria
关键词
Local feature; Evaluation; Video; Spatio-temporal; PARALLEL FRAMEWORK; SCALE; RECOGNITION;
D O I
10.1007/s11042-018-7032-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most successful approaches to video understanding and video matching use local spatio-temporal features as a sparse representation for video content. In the last decade, a great interest in evaluation of local visual features in the domain of images is observed. The aim is to provide researchers with guidance when selecting the best approaches for new applications and data-sets. FeEval is presented, a framework for the evaluation of spatio-temporal features. For the first time, this framework allows for a systematic measurement of the stability and the invariance of local features in videos. FeEval consists of 30 original videos from a great variety of different sources, including HDTV shows, 1080p HD movies and surveillance cameras. The videos are iteratively varied by well defined challenges leading to a total of 1710 video clips. We measure coverage, repeatability and matching performance under these challenges. Similar to prior work on 2D images, this leads to a new robustness and matching measurement. Supporting the choices of recent state of the art benchmarks, this allows for a in-depth analysis of spatio-temporal features in comparison to recent benchmark results.
引用
收藏
页码:17359 / 17390
页数:32
相关论文
共 50 条
  • [1] An in-depth evaluation framework for spatio-temporal features
    Julian Stottinger
    Naeem Bhatti
    Allan Hanbury
    [J]. Multimedia Tools and Applications, 2019, 78 : 17359 - 17390
  • [2] Spatio-Temporal Depth Interpolation (STDI)
    Ochs, Matthias
    Bradler, Henry
    Mester, Rudolf
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1742 - 1748
  • [3] Joint Spatio-temporal Depth Features Fusion Framework for 3D Structure Estimation in Urban Environment
    Nawaf, Mohamad Motasem
    Tremeau, Alain
    [J]. COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 526 - 535
  • [4] Systematic Evaluation of Spatio-Temporal Features on Comparative Video Challenges
    Stottinger, Julian
    Goras, Bogdan Tudor
    Pontiz, Thomas
    Hanbury, Allan
    Sebe, Nicu
    Gevers, Theo
    [J]. COMPUTER VISION - ACCV 2010 WORKSHOPS, PT I, 2011, 6468 : 349 - 358
  • [5] Spatio-Temporal Good Features to Track
    Feichtenhofer, Christoph
    Pinz, Axel
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 246 - 253
  • [6] A Framework on Spatio-Temporal Resource Search
    Guo, Qing
    Wolfson, Ouri
    Ayala, Daniel
    [J]. 2015 INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2015, : 1043 - 1048
  • [7] Convolutional Learning of Spatio-temporal Features
    Taylor, Graham W.
    Fergus, Rob
    LeCun, Yann
    Bregler, Christoph
    [J]. COMPUTER VISION - ECCV 2010, PT VI, 2010, 6316 : 140 - 153
  • [8] Spatio-temporal Phase Disambiguation in Depth Sensing
    Kushida, Takahiro
    Tanaka, Kenichiro
    Aoto, Takahito
    Funatomi, Takuya
    Mukaigawa, Yasuhiro
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2019,
  • [9] Spatio-Temporal Denoising for Depth Map Sequences
    Hach, Thomas
    Seybold, Tamara
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2016, 7 (02): : 21 - 35
  • [10] Spatio-Temporal Consistency in Depth Video Enhancement
    Li, Li
    Zhang, Caiming
    [J]. JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2013, 7 (05): : 808 - 817