An in-depth evaluation framework for spatio-temporal features

被引:0
|
作者
Stottinger, Julian [1 ]
Bhatti, Naeem [2 ]
Hanbury, Allan [3 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, I-38100 Trento, Italy
[2] Quaid I Azam Univ, Dept Elect, Islamabad, Pakistan
[3] Vienna Univ Technol, Inst Informat Syst Engn, Favoritenstr 9-11-194-04, A-1040 Vienna, Austria
关键词
Local feature; Evaluation; Video; Spatio-temporal; PARALLEL FRAMEWORK; SCALE; RECOGNITION;
D O I
10.1007/s11042-018-7032-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The most successful approaches to video understanding and video matching use local spatio-temporal features as a sparse representation for video content. In the last decade, a great interest in evaluation of local visual features in the domain of images is observed. The aim is to provide researchers with guidance when selecting the best approaches for new applications and data-sets. FeEval is presented, a framework for the evaluation of spatio-temporal features. For the first time, this framework allows for a systematic measurement of the stability and the invariance of local features in videos. FeEval consists of 30 original videos from a great variety of different sources, including HDTV shows, 1080p HD movies and surveillance cameras. The videos are iteratively varied by well defined challenges leading to a total of 1710 video clips. We measure coverage, repeatability and matching performance under these challenges. Similar to prior work on 2D images, this leads to a new robustness and matching measurement. Supporting the choices of recent state of the art benchmarks, this allows for a in-depth analysis of spatio-temporal features in comparison to recent benchmark results.
引用
收藏
页码:17359 / 17390
页数:32
相关论文
共 50 条
  • [41] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    [J]. 16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [42] A framework for intelligence analysis using spatio-temporal storytelling
    Raimundo F. Dos Santos
    Sumit Shah
    Arnold Boedihardjo
    Feng Chen
    Chang-Tien Lu
    Patrick Butler
    Naren Ramakrishnan
    [J]. GeoInformatica, 2016, 20 : 285 - 326
  • [43] NextPlace: A Spatio-temporal Prediction Framework for Pervasive Systems
    Scellato, Salvatore
    Musolesi, Mirco
    Mascolo, Cecilia
    Latora, Vito
    Campbell, Andrew T.
    [J]. PERVASIVE COMPUTING, 2011, 6696 : 152 - 169
  • [44] An efficient approach for video retrieval by spatio-temporal features
    Kumar, G. S. Naveen
    Reddy, V. S. K.
    [J]. INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2019, 23 (04) : 311 - 316
  • [45] Abnormal Activity Recognition Using Spatio-Temporal Features
    Chathuramali, K. G. Manosha
    Ramasinghe, Sameera
    Rodrigo, Ranga
    [J]. 2014 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2014,
  • [46] A spatio-temporal process visualization approach for wind features
    Kun Zheng
    Yuyao Ci
    Hongyu Liu
    Jinbiao Zhang
    [J]. Computational Geosciences, 2021, 25 : 2055 - 2067
  • [47] Spatio-temporal Semantic Features for Human Action Recognition
    Liu, Jia
    Wang, Xiaonian
    Li, Tianyu
    Yang, Jie
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (10): : 2632 - 2649
  • [48] SKELETON ACTION RECOGNITION BASED ON SPATIO-TEMPORAL FEATURES
    Huang, Qian
    Xie, Mengting
    Li, Xing
    Wang, Shuaichen
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3284 - 3288
  • [49] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [50] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83