A visual analytics framework for spatio-temporal analysis and modelling

被引:32
|
作者
Andrienko, Natalia [1 ]
Andrienko, Gennady [1 ]
机构
[1] Fraunhofer Inst IAIS Intelligent Anal & Informat, St Augustin, Germany
关键词
Spatio-temporal data; Interactive visual techniques; Clustering; Time series analysis; Visual analytics; TIME-SERIES FRAMEWORK; SELF-ORGANIZING MAPS; ATMOSPHERIC-POLLUTION; MULTIVARIATE;
D O I
10.1007/s10618-012-0285-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To support analysis and modelling of large amounts of spatio-temporal data having the form of spatially referenced time series (TS) of numeric values, we combine interactive visual techniques with computational methods from machine learning and statistics. Clustering methods and interactive techniques are used to group TS by similarity. Statistical methods for TS modelling are then applied to representative TS derived from the groups of similar TS. The framework includes interactive visual interfaces to a library of modelling methods supporting the selection of a suitable method, adjustment of model parameters, and evaluation of the models obtained. The models can be externally stored, communicated, and used for prediction and in further computational analyses. From the visual analytics perspective, the framework suggests a way to externalize spatio-temporal patterns emerging in the mind of the analyst as a result of interactive visual analysis: the patterns are represented in the form of computer-processable and reusable models. From the statistical analysis perspective, the framework demonstrates how TS analysis and modelling can be supported by interactive visual interfaces, particularly, in a case of numerous TS that are hard to analyse individually. From the application perspective, the framework suggests a way to analyse large numbers of spatial TS with the use of well-established statistical methods for TS analysis.
引用
收藏
页码:55 / 83
页数:29
相关论文
共 50 条
  • [1] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [2] A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams
    Sibolla, Bolelang H.
    Coetzee, Serena
    Van Zyl, Terence L.
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (12)
  • [3] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [4] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [5] Visual Analytics of the Spatio-temporal Multidimensional Air Monitoring Data
    Zhou, Zhiguang
    Hu, Dixin
    Liu, Yanan
    Chen, Weifeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (08): : 1477 - 1487
  • [6] Spatio-temporal data exploration for visual analytics in urban systems
    Nemocon, Camilo
    Tiberio Hernandez, Jose
    [J]. OBRAS COLECTIVAS EN CIENCIAS DE LA COMPUTACION, 2018, : 399 - 410
  • [7] Spatio-temporal visual analytics: a vision for 2020s
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 87 - 95
  • [8] A Survey on Visual Analytics for the Spatio-Temporal Exploration of Microblogging Content
    Bertone A.
    Burghardt D.
    [J]. Journal of Geovisualization and Spatial Analysis, 2017, 1 (1-2)
  • [9] AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollution
    Xiaoqi Yue
    Dan Feng
    Desheng Sun
    Chao Liu
    Hongxing Qin
    Haibo Hu
    [J]. Journal of Visualization, 2024, 27 : 215 - 233
  • [10] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhiguang Zhou
    Huihui Li
    Fang Liu
    Yanan Liu
    Chaogeng Huang
    Yubo Tao
    Hai Lin
    Weihua Su
    [J]. Journal of Visualization, 2018, 21 : 337 - 350