Visual Analytics Methods for Categoric Spatio-Temporal Data

被引:0
|
作者
von Landesberger, T. [1 ]
Bremm, Sebastian [1 ]
Andrienko, Natalia
Andrienko, Gennady
Tekusova, Maria
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
关键词
TIME; EXPLORATION; QUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We focus on visual analysis of space-and time-referenced categorical data, which describe possible states of spatial (geographical) objects or locations and their changes over time. The analysis of these data is difficult as there are only limited possibilities to analyze the three aspects (location, time and category) simultaneously. We present a new approach which interactively combines (a) visualization of categorical changes over time; (b) various spatial data displays; (c) computational techniques for task-oriented selection of time steps. They provide an expressive visualization with regard to either the overall evolution over time or unusual changes. We apply our approach on two use cases demonstrating its usefulness for a wide variety of tasks. We analyze data from movement tracking and meteorologic areas. Using our approach, expected events could be detected and new insights were gained.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [1] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [2] Visual Analytics of the Spatio-temporal Multidimensional Air Monitoring Data
    Zhou, Zhiguang
    Hu, Dixin
    Liu, Yanan
    Chen, Weifeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (08): : 1477 - 1487
  • [3] Spatio-temporal data exploration for visual analytics in urban systems
    Nemocon, Camilo
    Tiberio Hernandez, Jose
    [J]. OBRAS COLECTIVAS EN CIENCIAS DE LA COMPUTACION, 2018, : 399 - 410
  • [4] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhou, Zhiguang
    Li, Huihui
    Liu, Fang
    Liu, Yanan
    Huang, Chaogeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    [J]. JOURNAL OF VISUALIZATION, 2018, 21 (02) : 337 - 350
  • [5] Collaborative Visual Analytics of Multi-dimensional and Spatio-temporal Data
    [J]. Liu, Yuhua (liuyuhua@zufe.edu.cn), 1600, Institute of Computing Technology (29):
  • [6] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhiguang Zhou
    Huihui Li
    Fang Liu
    Yanan Liu
    Chaogeng Huang
    Yubo Tao
    Hai Lin
    Weihua Su
    [J]. Journal of Visualization, 2018, 21 : 337 - 350
  • [7] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226
  • [8] A Survey on Spatio-temporal Data Analytics Systems
    Alam, Md Mahbub
    Torgo, Luis
    Bifet, Albert
    [J]. ACM COMPUTING SURVEYS, 2022, 54 (10S)
  • [9] A collaborative large spatio-temporal data visual analytics architecture for emergence response
    Guo, D.
    Li, J.
    Cao, H.
    Zhou, Y.
    [J]. 8TH INTERNATIONAL SYMPOSIUM OF THE DIGITAL EARTH (ISDE8), 2014, 18
  • [10] FraPPE: A Vocabulary to Represent Heterogeneous Spatio-temporal Data to Support Visual Analytics
    Balduini, Marco
    Della Valle, Emanuele
    [J]. SEMANTIC WEB - ISWC 2015, PT II, 2015, 9367 : 321 - 328