A collaborative large spatio-temporal data visual analytics architecture for emergence response

被引:3
|
作者
Guo, D. [1 ]
Li, J. [1 ]
Cao, H. [2 ]
Zhou, Y. [1 ]
机构
[1] Chinese Acad Sci, Sci Data Ctr, Comp Network Informat Ctr, Beijing 100190, Peoples R China
[2] Beijing UniStrong Sci & Technol Co Ltd, Beijing 100015, Peoples R China
关键词
D O I
10.1088/1755-1315/18/1/012129
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The unconventional emergency, usually outbreaks more suddenly, and is diffused more quickly, but causes more secondary damage and derives more disaster than what it is usually expected. The data volume and urgency of emergency exceeds the capacity of current emergency management systems. In this paper, we propose a three-tier collaborative spatio-temporal visual analysis architecture to support emergency management. The prototype system, based on cloud computation environment, supports aggregation of massive unstructured and semi-structured data, integration of various computing model sand algorithms; collaborative visualization and visual analytics among users with a diversity of backgrounds. The distributed data in 100TB scale is integrated in a unified platform and shared with thousands of experts and government agencies by nearly 100 models. The users explore, visualize and analyse the big data and make a collaborative countermeasures to emergencies.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Collaborative Visual Analytics of Multi-dimensional and Spatio-temporal Data
    [J]. Liu, Yuhua (liuyuhua@zufe.edu.cn), 1600, Institute of Computing Technology (29):
  • [2] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [3] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [4] Spatio-temporal data exploration for visual analytics in urban systems
    Nemocon, Camilo
    Tiberio Hernandez, Jose
    [J]. OBRAS COLECTIVAS EN CIENCIAS DE LA COMPUTACION, 2018, : 399 - 410
  • [5] Visual Analytics of the Spatio-temporal Multidimensional Air Monitoring Data
    Zhou, Zhiguang
    Hu, Dixin
    Liu, Yanan
    Chen, Weifeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (08): : 1477 - 1487
  • [6] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhou, Zhiguang
    Li, Huihui
    Liu, Fang
    Liu, Yanan
    Huang, Chaogeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    [J]. JOURNAL OF VISUALIZATION, 2018, 21 (02) : 337 - 350
  • [7] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhiguang Zhou
    Huihui Li
    Fang Liu
    Yanan Liu
    Chaogeng Huang
    Yubo Tao
    Hai Lin
    Weihua Su
    [J]. Journal of Visualization, 2018, 21 : 337 - 350
  • [8] A Review of Maritime Spatio-temporal Data Analytics
    Newaliya, Nitin
    Singh, Yudhvir
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 219 - 226
  • [9] A Survey on Spatio-temporal Data Analytics Systems
    Alam, Md Mahbub
    Torgo, Luis
    Bifet, Albert
    [J]. ACM COMPUTING SURVEYS, 2022, 54 (10S)
  • [10] FraPPE: A Vocabulary to Represent Heterogeneous Spatio-temporal Data to Support Visual Analytics
    Balduini, Marco
    Della Valle, Emanuele
    [J]. SEMANTIC WEB - ISWC 2015, PT II, 2015, 9367 : 321 - 328