Spatio-Temporal Denoising for Depth Map Sequences

被引:1
|
作者
Hach, Thomas [1 ]
Seybold, Tamara [1 ]
机构
[1] Arnold & Richter Cinetech ARRI, Munich, Germany
关键词
Calibration; Collaborative Filtering; Denoising; Depth Maps; RGBD; RGBZ; Sparse Filtering; Time-of-Flight;
D O I
10.4018/IJMDEM.2016040102
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. Hence, all high-level RGB video renderings based on the accompanied depth maps' 3D geometry like augmented reality applications will have severe temporal flickering artifacts. The authors approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. The authors' denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, they extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. They show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that the authors' method is superior to state-of-the-art methods. Their method delivers flicker-free depth video streams for future applications.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [1] Adaptive spatio-temporal denoising of fluoroscopic X-ray sequences
    Tomic, M.
    Loncaric, S.
    Sersic, D.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (02) : 173 - 179
  • [2] Spatio-temporal Super-Resolution Using Depth Map
    Awatsu, Yusaku
    Kawai, Norihiko
    Sato, Tomokazu
    Yokoya, Naokazu
    [J]. IMAGE ANALYSIS, PROCEEDINGS, 2009, 5575 : 696 - 705
  • [3] Spatio-temporal alignment of sequences
    Caspi, Y
    Irani, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (11) : 1409 - 1424
  • [4] Exploiting spatio-temporal representation for 3D human action recognition from depth map sequences
    Ji, Xiaopeng
    Zhao, Qingsong
    Cheng, Jun
    Ma, Chenfei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [5] Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence
    Amiot, Carole
    Girard, Catherine
    Chanussot, Jocelyn
    Pescatore, Jeremie
    Desvignes, Michel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (06) : 1565 - 1574
  • [6] Spatio-temporal Cuboid Pyramid for Action Recognition using Depth Motion Sequences
    Ji, Xiaopeng
    Cheng, Jun
    Feng, Wei
    [J]. 2016 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2016, : 208 - 213
  • [7] Facial expression recognition based on spatio-temporal interest points for depth sequences
    Duh, D. -J.
    Huang, J. -C.
    Chen, S. -Y.
    Su, S.
    Zhang, H.
    Li, S.
    [J]. IMAGING SCIENCE JOURNAL, 2016, 64 (07): : 396 - 407
  • [8] Spatio-Temporal Depth Interpolation (STDI)
    Ochs, Matthias
    Bradler, Henry
    Mester, Rudolf
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1742 - 1748
  • [9] Joint Spatio-Temporal Alignment of Sequences
    Diego, Ferran
    Serrat, Joan
    Lopez, Antonio M.
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (06) : 1377 - 1387
  • [10] Dynamic proximity of spatio-temporal sequences
    Horn, D
    Dror, G
    Quenet, B
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (05): : 1002 - 1008