Sparse covariance matrix estimation in high-dimensional deconvolution

被引:7
|
作者
Belomestny, Denis [1 ,2 ]
Trabs, Mathias [3 ]
Tsybakov, Alexandre B. [4 ]
机构
[1] Duisburg Essen Univ, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
[2] Natl Res Univ, Higher Sch Econ, Shabolovka 26, Moscow 119049, Russia
[3] Univ Hamburg, Fac Math, Bundesstr 55, D-20146 Hamburg, Germany
[4] ENSAE, CREST, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
关键词
Fourier methods; minimax convergence rates; severely ill-posed inverse problem; thresholding; OPTIMAL RATES; DENSITY-ESTIMATION; MINIMAX ESTIMATION; CONVERGENCE; NOISE;
D O I
10.3150/18-BEJ1040A
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the estimation of the covariance matrix Sigma of a p-dimensional normal random vector based on n independent observations corrupted by additive noise. Only a general nonparametric assumption is imposed on the distribution of the noise without any sparsity constraint on its covariance matrix. In this high-dimensional semiparametric deconvolution problem, we propose spectral thresholding estimators that are adaptive to the sparsity of Sigma. We establish an oracle inequality for these estimators under model miss-specification and derive non-asymptotic minimax convergence rates that are shown to be logarithmic in n/log p. We also discuss the estimation of low-rank matrices based on indirect observations as well as the generalization to elliptical distributions. The finite sample performance of the threshold estimators is illustrated in a numerical example.
引用
收藏
页码:1901 / 1938
页数:38
相关论文
共 50 条
  • [41] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    [J]. BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [42] High-dimensional realized covariance estimation: a parametric approach
    Buccheri, G.
    Anga, G. Mboussa
    [J]. QUANTITATIVE FINANCE, 2022, 22 (11) : 2093 - 2107
  • [43] Fast covariance estimation for high-dimensional functional data
    Luo Xiao
    Vadim Zipunnikov
    David Ruppert
    Ciprian Crainiceanu
    [J]. Statistics and Computing, 2016, 26 : 409 - 421
  • [44] Element Aggregation for Estimation of High-Dimensional Covariance Matrices
    Yang, Jingying
    [J]. MATHEMATICS, 2024, 12 (07)
  • [45] Factorized estimation of high-dimensional nonparametric covariance models
    Zhang, Jian
    Li, Jie
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (02) : 542 - 567
  • [46] Fast covariance estimation for high-dimensional functional data
    Xiao, Luo
    Zipunnikov, Vadim
    Ruppert, David
    Crainiceanu, Ciprian
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 409 - 421
  • [47] Confidence intervals for high-dimensional inverse covariance estimation
    Jankova, Jana
    van de Geer, Sara
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1205 - 1229
  • [48] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [49] Faster Algorithms for High-Dimensional Robust Covariance Estimation
    Cheng, Yu
    Diakonikolas, Ilias
    Ge, Rong
    Woodruff, David P.
    [J]. CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [50] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107