Sparse covariance matrix estimation in high-dimensional deconvolution

被引:7
|
作者
Belomestny, Denis [1 ,2 ]
Trabs, Mathias [3 ]
Tsybakov, Alexandre B. [4 ]
机构
[1] Duisburg Essen Univ, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
[2] Natl Res Univ, Higher Sch Econ, Shabolovka 26, Moscow 119049, Russia
[3] Univ Hamburg, Fac Math, Bundesstr 55, D-20146 Hamburg, Germany
[4] ENSAE, CREST, 5 Ave Henry Le Chatelier, F-91120 Palaiseau, France
关键词
Fourier methods; minimax convergence rates; severely ill-posed inverse problem; thresholding; OPTIMAL RATES; DENSITY-ESTIMATION; MINIMAX ESTIMATION; CONVERGENCE; NOISE;
D O I
10.3150/18-BEJ1040A
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the estimation of the covariance matrix Sigma of a p-dimensional normal random vector based on n independent observations corrupted by additive noise. Only a general nonparametric assumption is imposed on the distribution of the noise without any sparsity constraint on its covariance matrix. In this high-dimensional semiparametric deconvolution problem, we propose spectral thresholding estimators that are adaptive to the sparsity of Sigma. We establish an oracle inequality for these estimators under model miss-specification and derive non-asymptotic minimax convergence rates that are shown to be logarithmic in n/log p. We also discuss the estimation of low-rank matrices based on indirect observations as well as the generalization to elliptical distributions. The finite sample performance of the threshold estimators is illustrated in a numerical example.
引用
收藏
页码:1901 / 1938
页数:38
相关论文
共 50 条
  • [31] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    [J]. BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [32] Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data
    Serra, Angela
    Coretto, Pietro
    Fratello, Michele
    Tagliaferri, Roberto
    [J]. BIOINFORMATICS, 2018, 34 (04) : 625 - 634
  • [34] Nonasymptotic support recovery for high-dimensional sparse covariance matrices
    Kashlak, Adam B.
    Kong, Linglong
    [J]. STAT, 2021, 10 (01):
  • [35] High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models
    Janzamin, Majid
    Anandkumar, Animashree
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1549 - 1591
  • [36] HIGH-DIMENSIONAL SPARSE BAYESIAN LEARNING WITHOUT COVARIANCE MATRICES
    Lin, Alexander
    Song, Andrew H.
    Bilgic, Berkin
    Ba, Demba
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1511 - 1515
  • [37] High-dimensional covariance matrix estimation using a low-rank and diagonal decomposition
    Wu, Yilei
    Qin, Yingli
    Zhu, Mu
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (02): : 308 - 337
  • [38] Fast and Positive Definite Estimation of Large Covariance Matrix for High-Dimensional Data Analysis
    Wen, Fei
    Chu, Lei
    Ying, Rendong
    Liu, Peilin
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 603 - 609
  • [39] Sparse estimation of high-dimensional correlation matrices
    Cui, Ying
    Leng, Chenlei
    Sun, Defeng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 390 - 403
  • [40] High-dimensional covariance estimation under the presence of outliers
    Huang, Hsin-Cheng
    Lee, Thomas C. M.
    [J]. STATISTICS AND ITS INTERFACE, 2016, 9 (04) : 461 - 468