High-dimensional covariance matrix estimation using a low-rank and diagonal decomposition

被引:1
|
作者
Wu, Yilei [1 ]
Qin, Yingli [1 ]
Zhu, Mu [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Akaike information criterion; consistency; coordinate descent; eigen-decomposition; Kullback-Leibler loss; log-determinant semi-definite programming; Markowitz portfolio selection; MODEL SELECTION; OPTIMAL RATES; INVERSE; CLASSIFICATION; CONVERGENCE; PROGRAMS;
D O I
10.1002/cjs.11532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Abstract We study high-dimensional covariance/precision matrix estimation under the assumption that the covariance/precision matrix can be decomposed into a low-rank component L and a diagonal component D. The rank of L can either be chosen to be small or controlled by a penalty function. Under moderate conditions on the population covariance/precision matrix itself and on the penalty function, we prove some consistency results for our estimators. A block-wise coordinate descent algorithm, which iteratively updates L and D, is then proposed to obtain the estimator in practice. Finally, various numerical experiments are presented; using simulated data, we show that our estimator performs quite well in terms of the Kullback-Leibler loss; using stock return data, we show that our method can be applied to obtain enhanced solutions to the Markowitz portfolio selection problem. The Canadian Journal of Statistics 48: 308-337; 2020 (c) 2019 Statistical Society of Canada
引用
收藏
页码:308 / 337
页数:30
相关论文
共 50 条
  • [1] Reconstruction of a high-dimensional low-rank matrix
    Yata, Kazuyoshi
    Aoshima, Makoto
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 895 - 917
  • [2] ESTIMATION OF HIGH-DIMENSIONAL LOW-RANK MATRICES
    Rohde, Angelika
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2011, 39 (02): : 887 - 930
  • [3] Sparse and Low-Rank Decomposition of Covariance Matrix for Efficient DOA Estimation
    Chen, Yong
    Wang, Fang
    Wan, Jianwei
    Xu, Ke
    [J]. 2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 957 - 961
  • [4] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [5] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [6] High-dimensional covariance matrix estimation
    Lam, Clifford
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2020, 12 (02)
  • [7] CHANGE DETECTION IN THE COVARIANCE STRUCTURE OF HIGH-DIMENSIONAL GAUSSIAN LOW-RANK MODELS
    Beisson, R.
    Vallet, P.
    Giremus, A.
    Ginolhac, G.
    [J]. 2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 421 - 425
  • [8] Low-rank diffusion matrix estimation for high-dimensional time-changed Levy processes
    Belomestny, Denis
    Trabs, Mathias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1583 - 1621
  • [9] ESTIMATION OF (NEAR) LOW-RANK MATRICES WITH NOISE AND HIGH-DIMENSIONAL SCALING
    Negahban, Sahand
    Wainwright, Martin J.
    [J]. ANNALS OF STATISTICS, 2011, 39 (02): : 1069 - 1097
  • [10] A New Statistic for Testing Covariance Equality in High-Dimensional Gaussian Low-Rank Models
    Beisson, Remi
    Vallet, Pascal
    Giremus, Audrey
    Ginolhac, Guillaume
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1797 - 1812