Correlation of Superlattice Cross-Plane Thermal Conductivity with Emission Wavelength in InAlAs/InGaAs Quantum Cascade Lasers

被引:3
|
作者
Meza, Alejandro M. Villalobos M. [1 ,2 ]
Shahzad, Monas [1 ]
Hathaway, Dagan [1 ,2 ]
Shu, Hong [3 ]
Lyakh, Arkadiy [1 ,2 ,4 ]
机构
[1] Univ Cent Florida, Nanosci Technol Ctr, 12424 Res Pkwy, Orlando, FL 32816 USA
[2] Univ Cent Florida, Coll Opt & Photon, 4304 Scorpius St, Orlando, FL 32816 USA
[3] IRGLARE LLC, 3259 Progress Dr, Orlando, FL 32826 USA
[4] Univ Cent Florida, Dept Phys, 4111 Libra Dr, Orlando, FL 32816 USA
关键词
quantum cascade lasers; thermal conductivity; infrared;
D O I
10.3390/mi13111934
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The low cross-plane thermal conductivity of quantum cascade lasers (QCLs) is a significant limitation in their Continuous-Wave (CW) performance. Structural parameters such as individual layer thicknesses and interface density vary for QCLs with different target emission wavelengths, and these design parameters are expected to influence the cross-plane thermal conductivity. Though previous works have used theoretical models and experimental data to quantify thermal conductivity, the correlation between target wavelength and thermal conductivity has yet to be reported for QCLs. In this work, we observe a general trend across a group of QCLs emitting from 3.7 to 8.7 mu m: as the QCL design changes to reduce wavelength, the thermal conductivity decreases as well. Numerically, we measured an approximate 70% reduction in thermal conductivity, from 1.5 W/(m center dot K) for the 8.7 mu m device, to 0.9 W/(m center dot K) for the 3.7 mu m device. Analysis of these structures with the Diffuse Mismatch Model (DMM) for thermal boundary resistance (TBR) shows that the largest contribution of this effect is the impact of superlattice interface density on the thermal conductivity. The observed changes in conductivity result in significant changes in projected CW optical power and should be considered in laser design.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers
    Fischer, M.
    Scalari, G.
    Celebi, K.
    Amanti, M.
    Walther, Ch.
    Beck, M.
    Faist, J.
    APPLIED PHYSICS LETTERS, 2010, 97 (22)
  • [12] Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers
    Mc Tavish, James
    Indjin, Dragan
    Harrison, Paul
    Journal of Applied Physics, 2006, 99 (11):
  • [13] Cross-plane thermal conductivity of tungsten diselenide
    Norouzzadeh P.
    Singh D.J.
    Physica Status Solidi (C) Current Topics in Solid State Physics, 2017, 14 (3-4):
  • [14] Transient thermal analysis of InAlAs/InGaAs/InP mid-infrared quantum cascade lasers
    Zhang, YG
    He, YJ
    Li, AZ
    CHINESE PHYSICS LETTERS, 2003, 20 (05) : 678 - 681
  • [15] Strain-compensated InGaAs/InAlAs quantum-cascade lasers
    Liu Feng-Qi
    Wang Zhanguo
    Li Lu
    Wang Lijun
    Liu Junqi
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 835 - 836
  • [16] Design and simulation of InGaAs/AlAsSb quantum-cascade lasers for short wavelength emission
    Evans, CA
    Jovanovic, VD
    Indjin, D
    Ikonic, Z
    Harrison, P
    APPLIED PHYSICS LETTERS, 2005, 87 (14) : 1 - 3
  • [17] InAlAs/InGaAs strain compensated quantum cascade structures for short wavelength infra-red emission
    Mitchell, C
    Sly, JL
    Missous, M
    EDMO 2001: INTERNATIONAL SYMPOSIUM ON ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 2001, : 107 - 112
  • [18] Cross-plane thermal conductivity of GaN/AlN superlattices
    Spindlberger, Anna
    Kysylychyn, Dmytro
    Thumfart, Lukas
    Adhikari, Rajdeep
    Rastelli, Armando
    Bonanni, Alberta
    APPLIED PHYSICS LETTERS, 2021, 118 (06)
  • [19] Long wavelength superlattice quantum cascade lasers at λ≃17 μm
    Tredicucci, A
    Gmachl, C
    Capasso, F
    Sivco, DL
    Hutchinson, AL
    Cho, AY
    APPLIED PHYSICS LETTERS, 1999, 74 (05) : 638 - 640
  • [20] Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices
    Liu, JL
    Khitun, A
    Wang, KL
    Liu, WL
    Chen, G
    Xie, QH
    Thomas, SG
    PHYSICAL REVIEW B, 2003, 67 (16)