Correlation of Superlattice Cross-Plane Thermal Conductivity with Emission Wavelength in InAlAs/InGaAs Quantum Cascade Lasers

被引:3
|
作者
Meza, Alejandro M. Villalobos M. [1 ,2 ]
Shahzad, Monas [1 ]
Hathaway, Dagan [1 ,2 ]
Shu, Hong [3 ]
Lyakh, Arkadiy [1 ,2 ,4 ]
机构
[1] Univ Cent Florida, Nanosci Technol Ctr, 12424 Res Pkwy, Orlando, FL 32816 USA
[2] Univ Cent Florida, Coll Opt & Photon, 4304 Scorpius St, Orlando, FL 32816 USA
[3] IRGLARE LLC, 3259 Progress Dr, Orlando, FL 32826 USA
[4] Univ Cent Florida, Dept Phys, 4111 Libra Dr, Orlando, FL 32816 USA
关键词
quantum cascade lasers; thermal conductivity; infrared;
D O I
10.3390/mi13111934
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The low cross-plane thermal conductivity of quantum cascade lasers (QCLs) is a significant limitation in their Continuous-Wave (CW) performance. Structural parameters such as individual layer thicknesses and interface density vary for QCLs with different target emission wavelengths, and these design parameters are expected to influence the cross-plane thermal conductivity. Though previous works have used theoretical models and experimental data to quantify thermal conductivity, the correlation between target wavelength and thermal conductivity has yet to be reported for QCLs. In this work, we observe a general trend across a group of QCLs emitting from 3.7 to 8.7 mu m: as the QCL design changes to reduce wavelength, the thermal conductivity decreases as well. Numerically, we measured an approximate 70% reduction in thermal conductivity, from 1.5 W/(m center dot K) for the 8.7 mu m device, to 0.9 W/(m center dot K) for the 3.7 mu m device. Analysis of these structures with the Diffuse Mismatch Model (DMM) for thermal boundary resistance (TBR) shows that the largest contribution of this effect is the impact of superlattice interface density on the thermal conductivity. The observed changes in conductivity result in significant changes in projected CW optical power and should be considered in laser design.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Correlation of structural and optical investigation of InGaAs/InAlAs quantum cascade laser
    Li, CM
    Liu, FQ
    Zhang, ZY
    Meng, XQ
    Jin, P
    Wang, ZG
    JOURNAL OF CRYSTAL GROWTH, 2003, 253 (1-4) : 198 - 202
  • [22] Characterization of InAlAs/InGaAs/InP mid-infrared quantum cascade lasers
    Zhang, YG
    Nan, KJ
    Li, AZ
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2002, 58 (11) : 2323 - 2328
  • [23] Influence of doping concentration and ambient temperature on the cross-plane seebeck coefficient of InGaAs/InAlAs superlattices
    Zhang, Y
    Vashaee, D
    Singh, R
    Shakouri, A
    Zeng, GH
    Chiu, YJ
    THERMOELECTRIC MATERIALS 2003-RESEARCH AND APPLICATIONS, 2004, 793 : 59 - 65
  • [24] In-plane and cross-plane thermal conductivity of graphene: Applications in thermal interface materials
    Balandin, Alexander A.
    CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES IV, 2011, 8101
  • [25] Long wavelength superlattice quantum cascade lasers at λ congruent 17 μm
    Tredicucci, Alessandro
    Gmachl, Claire
    Capasso, Federico
    Sivco, Deborah L.
    Hutchinson, Albert L.
    Cho, Alfred Y.
    Applied Physics Letters, 1999, 74 (05):
  • [26] DUAL WAVELENGTH EMISSION IN INJECTORLESS QUANTUM CASCADE LASERS
    Katz, S.
    Maier, M.
    Boehm, G.
    Amann, M. -C.
    2008 IEEE 20TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS (IPRM), 2008, : 457 - 459
  • [27] Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers
    Wang, C. A.
    Schwarz, B.
    Siriani, D. F.
    Connors, M. K.
    Missaggia, L. J.
    Calawa, D. R.
    McNulty, D.
    Akey, A.
    Zheng, M. C.
    Donnelly, J. P.
    Mansuripur, T. S.
    Capasso, F.
    JOURNAL OF CRYSTAL GROWTH, 2017, 464 : 215 - 220
  • [28] Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material
    Wei, Zhiyong
    Chen, Yunfei
    Dames, Chris
    APPLIED PHYSICS LETTERS, 2013, 102 (01)
  • [29] Point Defects Enhance Cross-Plane Thermal Conductivity In Graphite
    Shen, Ke
    Ren, Qi
    Zhao, Lu
    Qiu, Yu
    Yao, Xincheng
    Jiang, Puqing
    Huang, Zihan
    Li, Yongheng
    Li, Jiachen
    Yu, Suyuan
    Du, Xuezhen
    Liu, Huili
    Hong, Jiawang
    Xie, Lin
    Sun, Bo
    Wu, Junqiao
    Kang, Feiyu
    ADVANCED MATERIALS, 2025,
  • [30] High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers
    Liu, FQ
    Zhang, YZ
    Zhang, QS
    Ding, D
    Xu, B
    Wang, ZG
    Jiang, DS
    Sun, BQ
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (12) : L44 - L46