The relation between Euclidean and Lorentzian 2D quantum gravity

被引:41
|
作者
Ambjorn, J
Correia, J
Kristjansen, C
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Max Planck Inst Gravitati Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
2D gravity; random triangulations; Lorentzian triangulations; transfer matrix formalism; random walk; branched polymers;
D O I
10.1016/S0370-2693(00)00058-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian space-time. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a "renormalized" version of Euclidean quantum gravity. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [31] Lorentzian condition in quantum gravity
    Bousso, R
    Hawking, S
    [J]. PHYSICAL REVIEW D, 1999, 59 (10): : 1 - 6
  • [32] Discrete Lorentzian quantum gravity
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 96 - 107
  • [33] 3d Lorentzian, dynamically triangulated quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 980 - 982
  • [34] Computer simulations of 3-d Lorentzian quantum gravity
    Ambjorn, J
    Jurkiewicz, J
    Loll, R
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 689 - 692
  • [35] Bulk Correlation Functions in 2d Quantum Gravity
    I. K. Kostov
    V. B. Petkova
    [J]. Theoretical and Mathematical Physics, 2006, 146 : 108 - 118
  • [36] Spinfoam 2D quantum gravity and discrete bundles
    Oriti, D
    Rovelli, C
    Speziale, S
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (01) : 85 - 108
  • [37] QUANTUM COSMOLOGICAL APPROACH TO 2D DILATON GRAVITY
    NAVARROSALAS, J
    TALAVERA, CF
    [J]. NUCLEAR PHYSICS B, 1994, 423 (2-3) : 686 - 704
  • [38] REMARK ON EQUIVALENCE OF TOPOLOGICAL AND QUANTUM 2D GRAVITY
    MARSHAKOV, A
    MIRONOV, A
    MOROZOV, A
    [J]. JETP LETTERS, 1991, 54 (08) : 425 - 428
  • [39] The virtual black hole in 2d quantum gravity
    Grumiller, D
    Kummer, W
    Vassilevich, DV
    [J]. NUCLEAR PHYSICS B, 2000, 580 (1-2) : 438 - 456
  • [40] A remark on the three approaches to 2D quantum gravity
    A. Belavin
    M. Bershtein
    G. Tarnopolsky
    [J]. JETP Letters, 2011, 93 : 47 - 51