Extended Wigner function for the harmonic oscillator in the phase space

被引:2
|
作者
Perepelkin, E. E. [1 ,2 ,3 ]
Sadovnikov, B., I [1 ]
Inozemtseva, N. G. [2 ,3 ]
Burlakov, E., V [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow Tech Univ Commun & Informat, Moscow 123423, Russia
[3] Dubna State Univ, Moscow 141980, Moscow Region, Russia
关键词
Wigner function; Harmonic oscillator; Wave equation; Exact solution; Moyal equation; Rigorous result; QUANTUM-MECHANICS; PROBABILITY; OPERATORS; TERMS;
D O I
10.1016/j.rinp.2020.103546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New time dependent extended Wigner functions for the quantum harmonic oscillator have been obtained in this work. The Moyal equation for the harmonic oscillator has been associated with the wave equation of a 2D membrane in the phase plane. The values of the extended Wigner function are equal to the deviation values of the points on the surface of the membrane from the equilibrium state. The positive and negative values of the extended Wigner function correspond to the direction of the deviation from the equilibrium state. As an example, a time dependent extended Wigner function corresponding to the standing wave of quasi-probability density arising in the phase plane is considered.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Doubling feature of the Wigner function: finite phase space
    Zak, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (34)
  • [32] One-dimensional Harmonic Oscillator in Quantum Phase Space
    Lu, Jun
    Wang, Xue-Mei
    Wu, Ping
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 3750 - 3754
  • [33] Phase-space treatment of the driven quantum harmonic oscillator
    DIÓGENES CAMPOS
    Pramana, 2017, 88
  • [34] SCALE TRANSFORMATIONS IN PHASE SPACE AND STRETCHED STATES OF A HARMONIC OSCILLATOR
    Andreev, V. A.
    Davidovic, D. M.
    Davidovic, L. D.
    Davidovic, Milena D.
    Davidovic, Milos D.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (01) : 1080 - 1096
  • [35] Energy splitting of isotropic harmonic oscillator in noncommutative phase space
    Wang, JH
    Li, K
    Liu, P
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (05): : 387 - 391
  • [36] Operational Theories in Phase Space: Toy Model for the Harmonic Oscillator
    Plavala, Martin
    Kleinmann, Matthias
    PHYSICAL REVIEW LETTERS, 2022, 128 (04)
  • [37] Wigner function for a driven anharmonic oscillator
    Kheruntsyan, KV
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 1999, 1 (02) : 225 - 233
  • [38] PHASE SPACE QUANTIZATION OF THE LINEARLY DAMPED HARMONIC-OSCILLATOR
    DEKKER, H
    PHYSICA A, 1979, 95 (02): : 311 - 323
  • [39] Phase-space treatment of the driven quantum harmonic oscillator
    Campos, Diogenes
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (03):
  • [40] Phase-space Wave Functions of Harmonic Oscillator in Nanomaterials
    Lu Jun
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 2154 - 2157