Extended Wigner function for the harmonic oscillator in the phase space

被引:2
|
作者
Perepelkin, E. E. [1 ,2 ,3 ]
Sadovnikov, B., I [1 ]
Inozemtseva, N. G. [2 ,3 ]
Burlakov, E., V [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow Tech Univ Commun & Informat, Moscow 123423, Russia
[3] Dubna State Univ, Moscow 141980, Moscow Region, Russia
关键词
Wigner function; Harmonic oscillator; Wave equation; Exact solution; Moyal equation; Rigorous result; QUANTUM-MECHANICS; PROBABILITY; OPERATORS; TERMS;
D O I
10.1016/j.rinp.2020.103546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New time dependent extended Wigner functions for the quantum harmonic oscillator have been obtained in this work. The Moyal equation for the harmonic oscillator has been associated with the wave equation of a 2D membrane in the phase plane. The values of the extended Wigner function are equal to the deviation values of the points on the surface of the membrane from the equilibrium state. The positive and negative values of the extended Wigner function correspond to the direction of the deviation from the equilibrium state. As an example, a time dependent extended Wigner function corresponding to the standing wave of quasi-probability density arising in the phase plane is considered.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] WIGNER PHASE-SPACE METHOD - APPLICATION TO A FORCED HARMONIC-OSCILLATOR
    SEBASTIAN, KL
    CHEMICAL PHYSICS LETTERS, 1981, 80 (03) : 531 - 532
  • [2] The number-phase Wigner function in the extended fock space
    Kakazu, Kiyotaka
    Sakai, Eijiro
    PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (06): : 1027 - 1045
  • [3] Symmetry Transformation in Extended Phase Space: the Harmonic Oscillator in the Husimi Representation
    Bahrami, Samira
    Nasiri, Sadolah
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [4] OSCILLATORY STRUCTURE OF THE HARMONIC-OSCILLATOR WIGNER FUNCTION
    ROWLEY, N
    PRAKASH, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (14): : 3219 - 3236
  • [5] Harmonic oscillator Wigner function extension to exceptional polynomials
    Chaitanya, K. V. S. Shiv
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (03):
  • [6] Harmonic oscillator Wigner function extension to exceptional polynomials
    K V S Shiv Chaitanya
    Pramana, 2018, 91
  • [7] Wigner function for the Dirac oscillator in spinor space
    马凯
    王剑华
    袁毅
    Chinese Physics C, 2011, 35 (01) : 11 - 15
  • [8] Wigner function for the Dirac oscillator in spinor space
    Ma Kai
    Wang Jian-Hua
    Yuan Yi
    CHINESE PHYSICS C, 2011, 35 (01) : 11 - 15
  • [9] The Wigner function of a q-deformed harmonic oscillator model
    Jafarov, E. I.
    Lievens, S.
    Nagiyev, S. M.
    Van der Jeugt, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5427 - 5441
  • [10] WIGNER PHASE-SPACE DESCRIPTION OF A MORSE OSCILLATOR
    LEE, HW
    SCULLY, MO
    JOURNAL OF CHEMICAL PHYSICS, 1982, 77 (09): : 4604 - 4610