Extended Wigner function for the harmonic oscillator in the phase space

被引:2
|
作者
Perepelkin, E. E. [1 ,2 ,3 ]
Sadovnikov, B., I [1 ]
Inozemtseva, N. G. [2 ,3 ]
Burlakov, E., V [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow Tech Univ Commun & Informat, Moscow 123423, Russia
[3] Dubna State Univ, Moscow 141980, Moscow Region, Russia
关键词
Wigner function; Harmonic oscillator; Wave equation; Exact solution; Moyal equation; Rigorous result; QUANTUM-MECHANICS; PROBABILITY; OPERATORS; TERMS;
D O I
10.1016/j.rinp.2020.103546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New time dependent extended Wigner functions for the quantum harmonic oscillator have been obtained in this work. The Moyal equation for the harmonic oscillator has been associated with the wave equation of a 2D membrane in the phase plane. The values of the extended Wigner function are equal to the deviation values of the points on the surface of the membrane from the equilibrium state. The positive and negative values of the extended Wigner function correspond to the direction of the deviation from the equilibrium state. As an example, a time dependent extended Wigner function corresponding to the standing wave of quasi-probability density arising in the phase plane is considered.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Wave mechanics in quantum phase space: Harmonic oscillator
    Lu, J
    PHYSICA SCRIPTA, 2004, 69 (02) : 84 - 90
  • [22] Wigner functions, signed particles, and the harmonic oscillator
    Sellier, J. M.
    Dimov, I.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 907 - 915
  • [23] NUMBER-PHASE WIGNER FUNCTION ON FOCK SPACE
    VACCARO, J
    PHYSICAL REVIEW A, 1995, 52 (05): : 3474 - 3488
  • [24] WIGNER PHASE-SPACE FUNCTION AND THE BOND IN LIH
    SPRINGBORG, M
    THEORETICA CHIMICA ACTA, 1983, 63 (04): : 349 - 356
  • [25] WIGNER DISTRIBUTION FUNCTION AND SECOND QUANTIZATION IN PHASE SPACE
    BRITTIN, WE
    CHAPPELL, WR
    REVIEWS OF MODERN PHYSICS, 1962, 34 (04) : 620 - &
  • [26] WIGNER PHASE-SPACE METHOD - EXACT SOLUTION OF A HARMONIC-OSCILLATOR WITH TIME-DEPENDENT FORCE-CONSTANT
    SEBASTIAN, KL
    JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (02): : 1075 - 1086
  • [27] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [28] Number-phase Wigner function on Fock space
    Physical Review A. Atomic, Molecular, and Optical Physics, 1995, 52 (05):
  • [29] How to calculate the Wigner function from phase space
    Hug, M
    Menke, C
    Schleich, WP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : L217 - L224
  • [30] The Wigner function of a semiconfined harmonic oscillator model with a position-dependent effective mass
    Nagiyev, S. M.
    Jafarova, A. M.
    Jafarov, E. I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)